Physics - Key stage 4 - Energy

Insulating material required practical part 1 (Physics only) - worksheet

Dr Fishwick

Exam style question

A student investigated how the thickness of insulation affects the cooling of a beaker of hot water.

The student wraps cotton wool around the beaker and measure the temperature at the start and after 15 minutes.

Describe a method the student could have used to obtain the results shown. [6]

Thickness of cotton wool / mm	Start temperature / °C	End temperature / °C	Temperature change / °C
0	90	65	25
2	90	67	23
4	90	69	21
6	88	69	19
8	88	71	17
10	90	75	15
Thermometer			

Points to include

- Wrap cotton wool around the beaker
- How the water has been heated (kettle / bunsen burner)
- Measuring the volume of water with a measuring cylinder.
- Pouring the water into the beaker
- Putting a lid on top of the beaker
- Measure initial and final temperature using thermometer
- Use stopwatch / stopclock to measure 10 minutes.
- Calculate temperature decrease
- Repeat with different thicknesses (specify 0 10 mm) of cotton wool
- Repeat with same volume of water control variable

Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced. **5–6**

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced. **3–4**

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear. **1-2**

No relevant content: $\boldsymbol{0}$

In lesson questions

Step

- 1. Put the small beaker inside the larger beaker.
- 2. Use the **kettle** to **boil water. Put 80 cm³** of this hot water into th **small beaker**.
- 3. Use a piece of cardboard as a lid for the large beaker. The card must have a hole for the thermometer.
- 4. **Put the thermometer** through the hole in the **cardboard lid** so its bulb is in the hot water. Leave it for 1 minute
- 5. Record the temperature of the water using a thermometer and the stopwatch.
- 6. Record the temperature of the water every 3 minutes for 15 min

	Reason
	To produce reliable results with the same size beaker
he	This is the control variable and sets the starting point
lboard	
o that	
d start	
nutes.	

Imperative + Quantity + Equipment

Design a method

Write a method to investigate the effect of thickness on cooling rate of water.

- 1. Wrap layers of insulating material around the beaker, holding it in place with a rubber band. Do not add insulating material to the bottom of the beaker.
- 2. Put of into the beaker.
- 3. Add a
- 4. Insert the
- 5. Record
- 6.
- 7.

- Independent variable range, interval Dependent variable
- Reducing uncertainty which is the
 - biggest losses

Step

1. Put the small beaker inside the larger beaker.

- 2. Use the kettle to boil water. Put 80 cm³ of this hot water into the small beaker.
- 3. Use a piece of cardboard as a lid for the large beaker. The card must have a hole for the thermometer.
- 4. **Put the thermometer** through the hole in the **cardboard lid** so its bulb is in the hot water. Leave it for 1 minute
- 5. Record the temperature of the water using a thermometer and the stopwatch.
- 6. Record the temperature of the water every 3 minutes for 15 min

	Reason	
	To produce reliable results with the same size beaker	
he	This is the control variable and sets	
lboard	the starting point transfer out the top of the beaker	
o that	So we can measure the dependent variable	
d start	Measuring dependent variable	
nutes.		

Imperative + Quantity + Equipment

Design a method

Write a method to investigate the effect of thickness on cooling rate of water.

- **1. Wrap two layers** of **insulating material around the beaker**, holding it in place with a rubber band. Do not add insulating material to the bottom of the beaker.
- 2. Put 80 cm³ of hot water into the beaker.
- **3.** Add a lid to the **beaker**.
- **4. Insert** the **thermometer** through the hole in the lid so that its bulb is in the hot water.
- 5. Record the temperature of the water using a thermometer and start the stopwatch.
- **Record** the **temperature** of the water every **3 minutes for 15 minutes**. 6.
- **Repeat** with **2** more layers of **newspaper added**. 7.
- 8. Repeat until values for 0 10 layers have been collected.

