Practical application of Quantitative Chemistry

Mrs Begum

Periodic Table of Elements

Hiteme																	$\underset{\substack { \text { cheme } \\ \begin{subarray}{c}{\text { coim }{ \text { cheme } \\ \begin{subarray} { c } { \text { coim } } }\end{subarray}}{ }$
$\underset{\text { unim }}{\substack{\text { unim }}}$	Be														${ }_{\text {cosmem }}^{16}$	$\stackrel{18}{\text { nosion }}$	
$\underset{\substack{23 \\ \text { nadm } \\ \text { nam }}}{ }$	$\underset{\substack{24 \\ \text { max } \\ \hline 12 \\ \hline}}{ }$														$\underset{\substack{\text { cism }}}{\substack{32}}$		
				$\underset{\substack{\text { venaism } \\ \text { dis }}}{51}$			$\begin{aligned} & \text { se } \\ & \mathrm{Fe} \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { zin } \\ 10}}$	$\underset{\substack{\text { Gomam } \\ \text { gatim }}}{\text { and }}$				$\underset{\substack{\text { beor } \\ \text { brion }}}{\text { Br }}$	
				$\underset{\substack{\text { Nubum }}}{\substack{\text { Nub }}}$							$\underset{\substack{\text { cosism }}}{\substack{12 \\ \text { cold }}}$		$\mathbf{S n}_{n}^{1919}$				
								$\underset{\sim}{\text { midm }}$						$\underset{\substack{\text { bis }}}{\substack{\text { Bia } \\ \text { bim }}}$			
			${ }_{\substack{\text { Pren }}}^{\text {Rff }}$						${ }^{12811}$		$\mathrm{Cl}_{\substack{1285 \\ \mathrm{Cn}}}$						

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Warm up

1. Calculate the number of moles in 4.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
2. Calculate the number of moles of potassium nitrate dissolved in $10 \mathrm{~cm}^{3}$ of a $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution.
3. What mass of oxygen will react exactly with 6 g of magnesium?
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
4. If you have 4.8 g of Mg reacting with 7.3 g of HCl , which reactant is the limiting reactant?
$\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
5. How do you calculate yield?
6. Calculate the atom economy of this reaction, PbO is the desired product.
$\mathrm{A}_{\mathrm{r}} \mathrm{Pb}=207 ; \mathrm{S}=32 ; \mathrm{O}=16$
$2 \mathrm{PbS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$

Independent practice 1

Your task is to produce 6.5 g of copper sulfate. Using $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Work out the volume of acid you will need to make sure it is not the limiting reactant and write a method to produce the salts.

Calculate your yield

Your task was to produce 6.5 g of copper sulfate.
You identified the volume of acid you would need.
A student carried out your experiment and produced 4.9 g of copper sulfate.

1. What is the percentage yield?
2. Suggest reasons why the yield is less than 100%.

Atom economy

```
Atom = relative formula mass of the desired product }\times100
economy total formula mass of all the reactants
```

Calculate the atom economy of your reaction.
Relative atomic mass of $\mathrm{Cu}=63.5 ; \mathrm{O}=16 ; \mathrm{H}=1 ; \mathrm{S}=32$

Mr

Warm up

1. Calculate the number of moles in 4.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathbf{4 . 9 / 9 8} \mathbf{= 0 . 0 5} \mathbf{~ m o l}$
2. Calculate the number of moles of potassium nitrate dissolved in $10 \mathrm{~cm}^{3}$ of a $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution. Moles $\mathbf{=} 0.2 \times(\mathbf{1 0 / 1 0 0 0)} \mathbf{= 0 . 0 0 2} \mathbf{~ m o l}$
3. What mass of oxygen will react exactly with 6 g of magnesium? $\mathbf{4 g}$ of $\mathbf{O}_{\mathbf{2}}$ $2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
4. If you have 4.8 g of Mg reacting with 7.3 g of HCl , which reactant is the limiting reactant?
$\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
You need $\mathbf{2 . 4 g}$ of $\mathbf{~ M g}$ to react with 7.3 g of HCl and you added 4.8 g so $\mathbf{~ M g}$ is in excess. HCl is the limiting reactant.
5. How do you calculate yield? (actual yield/theoretical yield) $\mathbf{x} \mathbf{1 0 0}$
6. Calculate the atom economy of this reaction, PbO is the desired product.
$A_{r} \mathrm{~Pb}=207 ; \mathrm{S}=32 ; \mathrm{O}=16$
$2 \mathrm{PbS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}(2 \times(207+16) / 478+96) \times 100 \%=77.7 \%$

Independent practice 1 answers

Your task is to produce 6.5 g of copper sulfate, using $1.5 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
Work out the volume of acid you will need and write a method to produce the salts.
$1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
How many moles in $6.5 \mathrm{~g} \mathrm{CuSO}_{4}$?
Moles $=6.5 / 159.5=0.041$ moles
Balanced equation shows a ratio 1: 1. So 0.041 moles is needed of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Independent practice 1 answers

We need 0.041 moles of $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
Volume $\left(\mathrm{dm}^{3}\right)=$ moles $/$ concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$

$$
\begin{aligned}
& =0.041 / 1.5 \\
& =0.027 \mathrm{dm}^{3}
\end{aligned}
$$

Convert $0.027 \mathrm{dm}^{3}$ into $\mathrm{cm}^{3}=0.027 \times 1000=27 \mathrm{~cm}^{3}$

Method

1. Measure $27 \mathrm{~cm}^{3}$ of $7.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and pour it into the conical flask.
2. Gently heat the acid.
3. Add copper oxide, a spatula at a time, until no more will dissolve (excess).
4. Filter to get rid of the excess insoluble CuO.
5. Evaporate the water from the copper sulfate solution and you will be left with copper sulfate crystals.

Yield answers

1. What is the percentage yield? (4.9 / 6.5) $\times 100=75.4 \%$
2. Suggest reasons why the yield is less than 100%.

- Some copper sulphate remains on the filter paper.
- Some of the copper sulphate may have been spilled or lost during the transfer from conical flask to evaporating dish.

Atom economy answer

```
Atom = relative formula mass of the desired product }\times100
economy total formula mass of all the reactants
```

Calculate the atom economy of your reaction. Relative atomic mass of $\mathrm{Cu}=$ 63.5; O = 16; H = 1; S = 32

Atom economy $=(159.5 / 177.5) \times 100 \%=89.9 \%$

