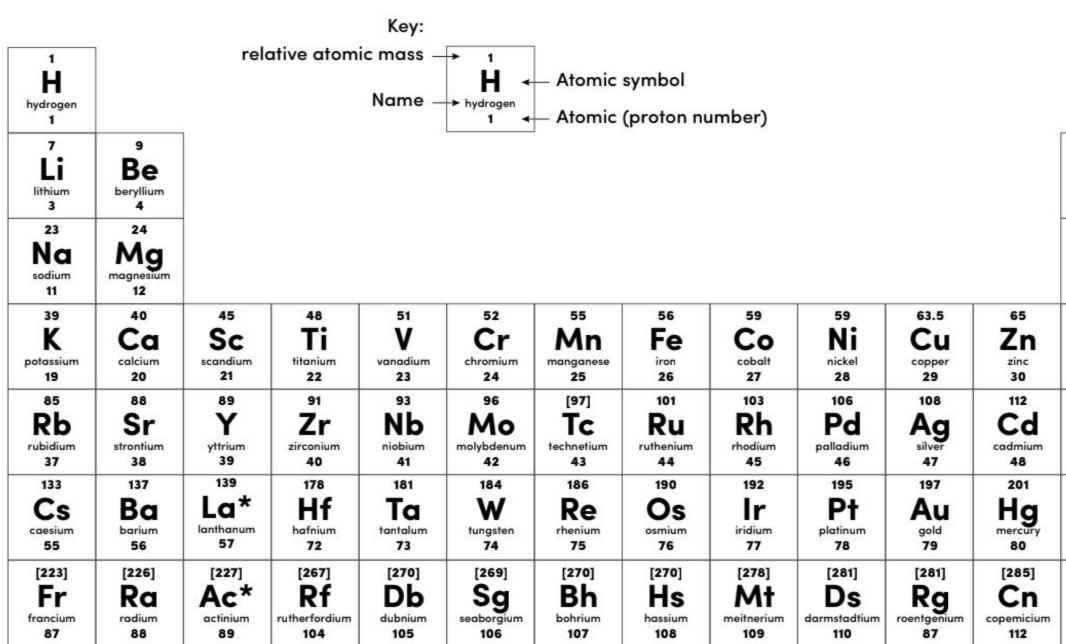
Combined Science - Chemistry - Key Stage 4 Quantitative Chemistry


Review Lesson Foundation

Mrs Begum

OAK NATIONAL ACADEMY

Periodic Table of Elements

* The lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

		51			4 He helium 2
11	12	14	16	19	20
B	C	N nitrogen	0	F	Ne
5	6	7	oxygen 8	9	10
27	28	31	32	35.5	40
AI	Si	P	S	Cl	Ar
aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
70	73	75	79	80	84
Ga	Ge	As	Se	Br	Kr
gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
115	119	122	128	127	131
In	Sn	Sb	Te	1	Xe
indium	tin	antimony	tellurium	iodine	xenon
49 204	50	51	52	53	54
204 TI	207	Bi	[209]	[210] A +	[222]
thallium	Pb	DI	Po	AT	Rn
81	82	83	84	85	86
[286]	[289]	[289]	[293]	[293]	[294]
Nh	FI	Mc	Lv	Ts	Og
nihonium 113	flerovium 114	moscovium 115	livermorium 116	tennessine 117	organesson 118

Calculate the M_r of the following:

- 1. Sodium chloride (NaCl)
- 2. Calcium chloride (CaCl₂)
- 3. Sulphuric acid (H_2SO_4)
- 4. Calcium carbonate ($CaCO_3$)
- 5. Magnesium nitrate $Mg(NO_3)_2$

Relative atomic masses:

- H-1
- Ca 40
- CI 35.5
- Na 23
- Mg 24
- N 14
- C 12
- 0 16
- S 32

- 1. What is the percentage of fluorine in tin fluoride (SnF₂)?
- 2. What is the percentage of magnesium in magnesium carbonate (MgCO₃)?
- 3. What is the percentage of oxygen in aluminium hydroxide Al(OH)₃?
- 4. What percentage of nitrogen in magnesium nitrate $Mg(NO_3)_2$?

Relative atomic masses (A_r):

- H-1
- Al 27
- Mg 24
- N 14
- C 12
- 0 16
- Sn 119
- F 19

Balance the following equations:

- 1. $H_2 + CI_2 \longrightarrow HCI$
- 2. CaO + HCI \longrightarrow CaCl₂ + H₂O
- 3. KCl + $F_2 \longrightarrow KF + Cl_2$
- 4. $ZnO + C \longrightarrow Zn + CO_2$
- 5. $CuSO_4 + NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$

- 1. Zinc carbonate decomposes to produce zinc oxide and carbon dioxide. A student heated 15 g of zinc carbonate to produce 12.5 g of zinc oxide, what mass of carbon dioxide is produced?
- 2. 7 g of lithium reacts with 18 g of water to produce 2 g of hydrogen, what mass of lithium hydroxide is formed?

- Convert the volumes below to dm^3 :
- 6. $2 \, dm^3$
- 7. $50 \,\mathrm{dm^3}$
- 8. $38 \,\mathrm{dm^3}$
- 9. $0.8 \,\mathrm{dm^3}$
- 10. $6.4 \,\mathrm{dm^3}$

1. 20 cm^3

2. 600 cm^3

3. 100 cm^3

4. $0.07 \,\mathrm{cm}^3$

5. 370 cm^3

Convert the volumes below to cm^3 :

Calculate the concentration of the following in g/dm^3

- 30 g solute in 500cm³
- 6 g solute in 20cm³

Calculate the mass of the solute dissolved in the given volumes:

- 0.5 dm³ of a 300 g/dm³ solution
- $0.05 \,\mathrm{dm^3}\,\mathrm{of}\,150 \,\mathrm{g/dm^3}\,\mathrm{solution}$

Independent practice 1 answers

Calculate the M_r of the following:

- 1. Sodium chloride (NaCl) 58.5
- 2. Calcium chloride (CaCl₂) 111
- 3. Sulphuric acid (H₂SO₄) 98
- 4. Calcium carbonate (CaCO₃) 100
- 5. Magnesium nitrate $Mg(NO_3)_2$ 148

Relative atomic masses:

- H-1
- Ca 40
- CI 35.5
- Na 23
- Mg 24
- N 14
- C 12
- 0 16
- S 32

Independent practice 2 answers

- 1. What is the percentage of fluorine in tin fluoride (SnF₂)? **38/157 x 100% = 24%**
- 2. What is the percentage of magnesium in magnesium carbonate (MgCO_z)? **24/84 x 100% = 29%**
- 3. What is the percentage of oxygen in aluminium hydroxide Al(OH)₃? **48/73 x 100% = 66%**
- 4. What percentage of nitrogen in magnesium nitrate $Mg(NO_3)_2$? **28/148 x 100% = 19%**

Relative atomic masses (A_r) :

- H 1
- Al 27
- Mg 24
- N 14
- C 12
- 0 16
- Sn 119
- F 19

Independent practice 3 answers

Balance the following equations:

- 1. $H_2 + CI_2 \longrightarrow 2HCI$
- 2. CaO + 2HCl \longrightarrow CaCl₂ + H₂O
- **3.** $2KCI + F_2 \longrightarrow 2KF + CI_2$
- **4.** 2ZnO + C → 2Zn + CO₂
- 5. $CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$

Independent practice 4 answers

- 1. Zinc carbonate decomposes to produce zinc oxide and carbon dioxide. A student heated 15 g of zinc carbonate to produce 12.5 g of zinc oxide, what mass of carbon dioxide is produced? **2.5 g of carbon dioxide**
- 2. 7 g of lithium reacts with 18 g of water to produce 2g of hydrogen, what mass of lithium hydroxide is formed? **25 g of lithium hydroxide**

Independent practice 5 answers

Convert the volumes below to dm³: Convert the volumes below to cm^3 :

1. 20 cm^3 **0.02 dm³** 6. $2 \,\mathrm{dm^3}$ **2000 cm³** 2. 600 cm^3 **0.6 dm³** 7. $50 \,\mathrm{dm^3}$ **50000 cm³** 3. 100 cm^3 **0.1 dm³** 8. $38 \,\mathrm{dm^3}$ **38000 cm³** 4. $0.07 \,\mathrm{cm^3}$ **0.00007 dm³** 9. 0.8 dm³ 800 cm³ 5. 370 cm^3 **0.37 dm³** 10. 6.4 dm³ 6400 cm³

Independent practice 6 answers

Calculate the concentration of the following in g/dm³

- 30 g solute in 500cm³. 30 / (500/1000) = 60 g/dm³
- 6 g solute in 20cm³. 6 / (20/1000) = 300 g/dm³

Calculate the mass of the solute dissolved in the given volumes:

- 0.5dm³ of a 300 g/dm³ solution. 0.5 x 300 = 150 g
- 0.05dm³ of 150 g/dm³ solution. 0.05 x 150 = 7.5 g

