Combined Science - Chemistry - Key Stage 4

 Quantitative Chemistry
Review Lesson Foundation

OAK NATIONAL ACADEMY

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Independent practice 1

Calculate the M_{r} of the following:

1. Sodium chloride (NaCl)
2. Calcium chloride $\left(\mathrm{CaCl}_{2}\right)$
3. Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
4. Calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$
5. Magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Relative atomic masses:

- H-1
- Ca-40
- CI-35.5
- Na-23
- Mg-24
- N-14
- C-12
- O-16
- S-32

Independent practice 2

1. What is the percentage of fluorine in tin fluoride $\left(\mathrm{SnF}_{2}\right)$?
2. What is the percentage of magnesium in magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$?
3. What is the percentage of oxygen in aluminium hydroxide $\mathrm{Al}(\mathrm{OH})_{3}$?
4. What percentage of nitrogen in magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$?

Relative atomic masses $\left(A_{r}\right)$:

- H-1
- AI-27
- Mg-24
- N-14
- C-12
- O-16
- $\mathrm{Sn}-119$
- F-19

Independent practice 3

Balance the following equations:

1. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{HCl}$
2. $\mathrm{CaO}+\mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{KCl}+\mathrm{F}_{2} \longrightarrow \mathrm{KF}+\mathrm{Cl}_{2}$
4. $\mathrm{ZnO}+\mathrm{C} \longrightarrow \mathrm{Zn}+\mathrm{CO}_{2}$
5. $\mathrm{CuSO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Independent practice 4

1. Zinc carbonate decomposes to produce zinc oxide and carbon dioxide. A student heated 15 g of zinc carbonate to produce 12.5 g of zinc oxide, what mass of carbon dioxide is produced?
2. 7 g of lithium reacts with 18 g of water to produce 2 g of hydrogen, what mass of lithium hydroxide is formed?

Independent practice 5

Convert the volumes below to dm^{3} :

1. $20 \mathrm{~cm}^{3}$
2. $600 \mathrm{~cm}^{3}$
3. $100 \mathrm{~cm}^{3}$
4. $0.07 \mathrm{~cm}^{3}$
5. $370 \mathrm{~cm}^{3}$

Convert the volumes below to cm^{3} :
6. $2 \mathrm{dm}^{3}$
7. $50 \mathrm{dm}^{3}$
8. $38 \mathrm{dm}^{3}$
9. $0.8 \mathrm{dm}^{3}$
10. $6.4 \mathrm{dm}^{3}$

Independent practice 6

Calculate the concentration of the following in $\mathrm{g} / \mathrm{dm}^{3}$

- 30 g solute in $500 \mathrm{~cm}^{3}$
- 6 g solute in $20 \mathrm{~cm}^{3}$

Calculate the mass of the solute dissolved in the given volumes:

- $0.5 \mathrm{dm}^{3}$ of a $300 \mathrm{~g} / \mathrm{dm}^{3}$ solution
- $0.05 \mathrm{dm}^{3}$ of $150 \mathrm{~g} / \mathrm{dm}^{3}$ solution

Independent practice 1 answers

Calculate the M_{r} of the following:

1. Sodium chloride $(\mathrm{NaCl}) 58.5$
2. Calcium chloride $\left(\mathrm{CaCl}_{2}\right) 111$
3. Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) 98$
4. Calcium carbonate $\left(\mathrm{CaCO}_{3}\right) 100$
5. Magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} 148$

Relative atomic masses:

- H-1
- Ca-40
- CI-35.5
- Na-23
- Mg-24
- N-14
- C-12
- O-16
- S-32

Independent practice 2 answers

1. What is the percentage of fluorine in tin fluoride $\left(\mathrm{SnF}_{2}\right)$? 38/157 $\times 100 \%=24 \%$
2. What is the percentage of magnesium in magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$? 24/84 $\times 100 \%=29 \%$
3. What is the percentage of oxygen in aluminium hydroxide $\mathrm{Al}(\mathrm{OH})_{3}$? 48/73 $\times 100 \%=66 \%$
4. What percentage of nitrogen in magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$? $28 / 148 \times 100 \%=19 \%$

Relative atomic masses $\left(A_{\mathrm{r}}\right)$:

- H-1
- Al-27
- Mg-24
- N-14
- C-12
- O-16
- $\mathrm{Sn}-119$
- F-19

Independent practice 3 answers

Balance the following equations:

1. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}$
2. $\mathrm{CaO}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. $2 \mathrm{KCl}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{KF}+\mathrm{Cl}_{2}$
4. $2 \mathrm{ZnO}+\mathrm{C} \longrightarrow 2 \mathrm{Zn}+\mathrm{CO}_{2}$
5. $\mathrm{CuSO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Independent practice 4 answers

1. Zinc carbonate decomposes to produce zinc oxide and carbon dioxide. A student heated 15 g of zinc carbonate to produce 12.5 g of zinc oxide, what mass of carbon dioxide is produced? $\mathbf{2 . 5} \mathbf{~ g}$ of carbon dioxide
2. 7 g of lithium reacts with 18 g of water to produce 2 g of hydrogen, what mass of lithium hydroxide is formed? $\mathbf{2 5} \mathbf{g}$ of lithium hydroxide

Independent practice 5 answers

Convert the volumes below to dm^{3} :

1. $20 \mathrm{~cm}^{3}$
$0.02 \mathrm{dm}^{3}$
2. $600 \mathrm{~cm}^{3}$
$0.6 \mathrm{dm}^{3}$
3. $100 \mathrm{~cm}^{3}$
$0.1 \mathrm{dm}^{3}$
4. $0.07 \mathrm{~cm}^{3} \quad 0.00007 \mathrm{dm}^{3}$
5. $370 \mathrm{~cm}^{3}$
0.37 dm 3

Convert the volumes below to cm^{3} :
6. $2 \mathrm{dm}^{3} \quad 2000 \mathrm{~cm}^{3}$
7. $50 \mathrm{dm}^{3} \quad 50000 \mathrm{~cm}^{3}$
8. $38 \mathrm{dm}^{3} \quad 38000 \mathrm{~cm}^{3}$
9. $0.8 \mathrm{dm}^{3} 800 \mathrm{~cm}^{3}$
10. $6.4 \mathrm{dm}^{3} \quad 6400 \mathrm{~cm}^{3}$

Independent practice 6 answers

Calculate the concentration of the following in $\mathrm{g} / \mathrm{dm}^{3}$

- 30 g solute in $500 \mathrm{~cm}^{3} .30 /(500 / 1000)=60 \mathrm{~g} / \mathrm{dm}^{3}$
- 6 g solute in $20 \mathrm{~cm}^{3} .6 /(20 / 1000)=300 \mathrm{~g} / \mathrm{dm}^{3}$

Calculate the mass of the solute dissolved in the given volumes:

- $0.5 \mathrm{dm}^{3}$ of a $300 \mathrm{~g} / \mathrm{dm}^{3}$ solution. $0.5 \times 300=150 \mathrm{~g}$
- $0.05 \mathrm{dm}^{3}$ of $150 \mathrm{~g} / \mathrm{dm}^{3}$ solution. $0.05 \times 150=7.5 \mathrm{~g}$

