Draw and Recognise Circle Graphs

Miss Davies

Please note some slides do have colour font on them

Equation of a circle

1. Write down the equation of $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}

2. a) Write down the equation of the circle with centre $(0,0)$ and radius 4.
b) Write down the equation of the circle with centre $(0,0)$ and diameter 14
c) Write down the equation of the circle with centre $(0,0)$ and area 100π

Equation of a circle

3. A circle with centre $(0,0)$ has a circumference of $144 \pi \mathrm{~cm}$.

Find the equation of the circle.
4. The equation of a circle is
$x^{2}=42.24-y^{2}$
Work out the circumference of the circle.

Equation of a circle

5. e.g. Sketch each graph
a)

Label C_{1}
b) $x^{2}+y^{2}=\frac{25}{4}$

Label C_{2}

6. The equation of circle C_{1} is given as $x^{2}+y^{2}=b^{2}$ where b is the radius of the circle.
C_{2} is a concentric circle to C_{1} that has an area $\frac{2}{3}$ the size of C_{1}.

Write the equation of C_{2} in terms of x, y and b.

Answers

Equation of a circle

1. Write down the equation of $\mathrm{C}_{1}, \mathrm{C}_{2}$,

$\mathrm{C}_{2}: x^{2}+y^{2}=56.25$
$\mathrm{C}_{3}: x^{2}+y^{2}=189.0625$
2. a) Write down the equation of the circle with centre $(0,0)$ and radius 4.

$$
x^{2}+y^{2}=16
$$

b) Write down the equation of the circle with centre $(0,0)$ and diameter 14

$$
x^{2}+y^{2}=49
$$

c) Write down the equation of the circle with centre $(0,0)$ and area 100π

$$
x^{2}+y^{2}=100
$$

Equation of a circle

3. A circle with centre $(0,0)$ has a circumference of $12 \pi \mathrm{~cm}$.

Find the equation of the circle.

$$
x^{2}+y^{2}=36
$$

4. The equation of a circle is
$x^{2}=42.24-y^{2}$
Work out the circumference of the circle. Give your answer in exact form.
13π

Equation of a circle

5. e.g. Sketch each graph
a) $x^{2}+y^{2}=49$

Label C_{1}
b) $x^{2}+y^{2}=\frac{25}{4}$

Label C_{2}

6. The equation of circle C_{1} is given as $x^{2}+y^{2}=b^{2}$ where b is the radius of the circle.
C_{2} is a concentric circle to C_{7} that has an area $\frac{2}{3}$ the size of C_{1}.

Write the equation of C_{2} in terms of x, y and $b . \quad x^{2}+y^{2}=\frac{2 a^{2}}{3}$

