Maths # Draw and Recognise Circle Graphs Miss Davies Please note some slides do have colour font on them 1. Write down the equation of C_1 , C_2 , and C_3 2. a) Write down the equation of the circle with centre (0, 0) and radius 4. b) Write down the equation of the circle with centre (0, 0) and diameter 14 c) Write down the equation of the circle with centre (0, 0) and area 100π 3. A circle with centre (0, 0) has a circumference of 144π cm. Find the equation of the circle. 4. The equation of a circle is $$x^2 = 42.24 - y^2$$ Work out the circumference of the circle. 5. e.g. Sketch each graph a) $$x^2 + y^2 = 49$$ Label C₁ Label C₂ 6. The equation of circle C_1 is given as $x^2 + y^2 = b^2$ where b is the radius of the circle. C₂ is a concentric circle to C₁ that has $\frac{2}{10}$ an area $\frac{2}{3}$ the size of C₁. Write the equation of C_2 in terms of x, yand b. ## **Answers** 1. Write down the equation of C_1 , C_2 , and C_3 $$C_1$$: $x^2 + y^2 = 100$ $$C_2$$: $x^2 + y^2 = 56.25$ $$C_3$$: $x^2 + y^2 = 189.0625$ 2. a) Write down the equation of the circle with centre (0, 0) and radius 4. $$x^2 + y^2 = 16$$ b) Write down the equation of the circle with centre (0, 0) and diameter 14 $$x^2 + y^2 = 49$$ c) Write down the equation of the circle with centre (0, 0) and area 100π $$x^2 + y^2 = 100$$ 3. A circle with centre (0, 0) has a circumference of 12π cm. Find the equation of the circle. $$x^2 + y^2 = 36$$ 4. The equation of a circle is $$x^2 = 42.24 - y^2$$ Work out the circumference of the circle. Give your answer in exact form. $$13\pi$$ 5. e.g. Sketch each graph a) $$x^2 + y^2 = 49$$ Label C₁ b) $x^2 + y^2 = \frac{25}{4}$ Label C₂ 6. The equation of circle C_1 is given as $x^2 + y^2 = b^2$ where b is the radius of the circle. C_2 is a concentric circle to C_1 that has an area $\frac{2}{3}$ the size of C_1 . Write the equation of C₂ in terms of x, y and b. $x^2 + y^2 = \frac{2a^2}{3}$