
Combined Science - Chemistry - Key Stage 4

Electrolysis Half Equations - Higher Tier

Periodic Table of Elements

Source: Oak

Describe what has happened in terms of electrons for the changes below to occur. State if electrons have been lost or gained and how many have been lost or gained.

- 1. $AI \rightarrow AI^{3+}$
- 2. Br → Br⁻
- 3. $N^{3-} \rightarrow N$
- 4. K⁺ → K

Describe what has happened in terms of electrons for the changes below to occur. State if electrons have been lost or gained and how many have been lost or gained.

- 1. Al → Al³⁺ Lost 3 electrons
- 2. Br → Br⁻ Gained 1 electrons
- 3. $N^{3-} \rightarrow N$ Gained 3 electrons
- 4. Mg²⁺ → Mg Lost 2 electrons

Explain how aluminium ions, Al^{3+} , form aluminium atoms at the cathode during the electrolysis of aluminium oxide.

Aluminium ions are _____ charged so are attracted to the ____ cathode.

At the cathode aluminium ions _____ three electrons to form aluminium atoms.

Independent task answers

Explain how aluminium ions, Al³⁺, form aluminium atoms at the cathode during the electrolysis of aluminium oxide.

Aluminium ions are positively charged so are attracted to the negative cathode.

At the cathode aluminium ions lose three electrons to form aluminium atoms.

Key tips

Have to balance in terms of both **atoms/ions** and **charge** Remember the formula of your non-metal Cl_2 , Br_2 , l_2 , O_2 , H_2 (diatomic)

Balance the half equations below

1.
$$Ca^{2+}$$
 + e^{-} \rightarrow Ca

2. Br^{-} \rightarrow Br_{2} + e^{-}

3. Al^{3+} + e^{-} \rightarrow Al

4. H^{+} + e^{-} \rightarrow $H_{2}O$ + O_{2} + e^{-}

5. OH^{-} \rightarrow $H_{2}O$ + O_{2} + e^{-}

Challenge: construct the half equations for the reactions at each electrode for the electrolysis of molten potassium oxide.

Independent task answers

Balance the half equations below

1.
$$Ca^{2+}$$
 + $2e^{-}$ \rightarrow Ca

2. $2Br^{-}$ \rightarrow Br_{2} + $2e^{-}$

3. Al^{3+} + $3e^{-}$ \rightarrow Al

4. $2H^{+}$ + $2e^{-}$ \rightarrow H_{2}

5. $4OH^{-}$ \rightarrow $2H_{2}O$ + O_{2} + $4e^{-}$

Challenge: construct the half equations for the reactions at each electrode for the electrolysis of molten potassium oxide.

Cathode:
$$K^+ + e^- \rightarrow K$$
 Anode: $20^{2-} \rightarrow O_2 + 4e^-$

For the electrolysis of molten calcium oxide

- 1. Explain how calcium ions, Ca²⁺, form calcium atoms, Ca, at the cathode.
- 2. Balance the half equation for the formation of oxygen at the anode.

$$O^{2-} \rightarrow O_{2} + e^{-}$$

- 1. Construct the equation for the half equation at the cathode.
- 2. Explain which species has been oxidised and which has been reduced.

Independent task answers

For the electrolysis of molten calcium oxide

- 1. Calcium ions are positive so are attracted to the negative cathode. The Ca²⁺ ions gain two electrons forming calcium atoms.
- 2. $20^{2-} \rightarrow 0_2 + 4e^{-}$
- 3. $Ca^{2+} + 2e^{-} \rightarrow Ca$
- 4. Ca²⁺ has been reduced because it gained electrons. O²⁻ has been oxidised because it lost electrons.

