Lesson 7 - Investigating Elastic Objects

Physics-KS3
Forces in Action

Mrs Wolstenholme

Elastic Deformation

Elastic deformation: an object returns to
its original shape when forces are removed

Elastic object: undergoes elastic deformation

Could be stretching or compressing

Which of these is an elastic object?

Option 1

Plank of wood

Option 3
Spring

Option 2

Brick

Option 4
Glass

Elastic deformation is when an object

Option 1

changes shape permanently.

Option 3

returns to its original shape when
the force is removed.

Option 2

breaks.

Option 4

never changes shape.

Two examples of elastic deformation are:

Option 1

Compressing

Option 3
Hiding

Option 2

Stretching

$$
\text { Option } 4
$$

Breaking

Complete the task

Elastic deformation

What happens to an object undergoing elastic deformation when the forces are removed?

What type of deformation does an elastic object undergo?

Could be stretching or \qquad

Investigate how force affects the extension of the spring

Why do I line the zero on my ruler up with the bottom of the spring?

Option 1

So that I am measuring the length of the spring

Option 3

So that the wind doesn't move the spring

Option 2

So that I am measuring the extension of the spring

Option 4

So that it is easier to see the spring

Why do I repeat?

Option 1

For fun!!

Option 3

To help me spot anomalies

Option 2

To make sure my results are reproducible

Option 4

Variables

Independent variable (the one we change)
The force on the spring
Dependant variable (the one we measure)
The extension of the spring
Control variable (the ones we keep the same)
The spring, the position of the ruler

In this investigation, the independent variable is:

Option 1

Extension of the spring

Option 3

The spring

Option 2

Position of the ruler

Option 4

Force on the spring

In this investigation, the dependent variable

 is:Option 1
Extension of the spring

Option 3
The spring

Option 2

Position of the ruler

Option 4

Force on the spring

In this investigation, the control variables

are:

Option 1

Extension of the spring

Option 3

The spring

Option 2

Position of the ruler

Option 4

Force on the spring

The independent variable is:

Option 1

The one we change

Option 3

The one we measure

Option 2

The one we ignore

Option 4

The ones that stay the same

The dependent variable is:

Option 1

The one we change

Option 3

The one we measure

Option 2

The one we ignore

Option 4

The ones that stay the same

On your own:

Independent variable (the one \qquad
The:
Dependant variable (the one \qquad
The:
Control variable (the ones \qquad
The:

Credit: Andy Saville

1. Hang a spring off a clamp and stand and clamp a ruler so the zero line is lined up with the bottom of the spring

2. Add 100 g mass on the bottom of the spring
3. Record the measurement from the base of the spring

Force	Extension (cm)			
	1	2	3	Mean
0	0			
1	12			
2				
3				
4				

Credit: Andy Saville

4. Continue to add 100 g masses and record the extension until you reach 800 g

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0			
1	12			
2	24			
3	36			
4	48			

Credit: Andy Saville

5. Remove the masses and repeat twice

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0	0	0	
1	12	12	13	
2	24	24	26	
3	36	36	39	
4	48	50	50	

6. Plot a force vs Extension graph

Method writing practice

1

1. Hang a \qquad off a clamp and stand and clamp a ruler so the
\qquad line is lined up with the \qquad of the spring

2. Add \qquad on the bottom of the spring

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0			
10	12			
20	24			
30	36			
40	48			

3
3. Record the measurement from the \qquad of the spring

Method writing practice

4. Continue to \qquad and record the \qquad until you reach \qquad g

5. \qquad the masses
and \qquad twice

6

6. \qquad a force vs
Extension graph

Method writing practice

2

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0			
10	12			
20	24			
30	36			
40	48			

3

6

