
Lesson 4: Making Connections
Part 2

Physical Computing

Computing

Allen Heard

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education11

Task 1 - Melodies

Copy the incomplete program below
in your development environment.

Select one of the melodies opposite
and complete line 3.

Flash the program to your micro:bit, to
see it (and hear it) run.

2

1
2
3

from microbit import *
import music
music.play(music.)

● DADADADUM
● PRELUDE
● NYAN
● FUNK
● BIRTHDAY
● FUNERAL
● PYTHON
● CHASE
● WAWAWAWAA
● POWER_UP

● ENTERTAINER
● ODE
● RINGTONE
● BLUES
● WEDDING
● PUNCHLINE
● BADDY
● BA_DING
● JUMP_UP
● POWER_DOWN

Task 1 - Output - part 1

In lesson 1, we used the LEDs to
display a messages and images.

In this task, you will display images
using a loop.

3

Credit: micro:bit Foundation

Task 1 - Output - part 1

Replace the three blocks in lines 2, 3,
and 4 with images such as HAPPY,
SAD, MEH.

You can find the complete list by
searching on the internet for micro:bit
images.

Then add the correct variable name to
line 6.

4

In your development environment,
complete the program below, so that
the list of images contains three
built-in images of your choice.

Don’t forget to flash your program.

from microbit import *
images = [,
 ,
]
for image in images:
 display.show()

1
2
3
4
5
6

Task 1 - Output - part 2

In part 1, the micro:bit displays the
images so fast that you only get to see
the last image in the list.

Add the line opposite to your program,
to introduce a delay between
displaying the images in the list.

Tip: You may need to indent the new
line.

5

sleep(1000)+

Note: The sleep function on the
micro:bit takes a number of
milliseconds as an argument.
Therefore, a 1000 milliseconds is a
delay of 1 second. Also, you don’t need
to import any module to use the sleep
function.

Task 2 - Controlling individual LEDs - part 1

Complete the program below to light
up the top right pixel. You can use
the image opposite to work out the x
and y coordinates or experiment!

Then, using the worksheet, complete
the rest of the parts to this task.

6

from microbit import *
delay = 100
top right
display.set_pixel(, , 9)

1
2
3
4

Task 2 - Controlling individual LEDs - part 2

Add the lines below to your program
to light up the bottom right pixel.

7

sleep(delay)
display.clear()
bottom right
display.set_pixel(, , 9)

+
+
+
+

Task 2 - Controlling individual LEDs - part 2

Repeat part 2, in order to light up the
bottom left and top left pixels (in that
order).

Then, nest all of your code in a while
loop, so that four pixels keep lighting
up, one after another forever.

while True:
………………………..

8

Task 3 - Controlling individual LEDs - part 1

What values would be required to
produce the star output shown
opposite?

And what other code would you need
to add to make it work?

Replicate the image below by
filling in the appropriate values for
column, row, and brightness.

star = Image("?????:"
 "?????:"
 "?????:"
 "?????:"
 "?????")

Flash your program to see you results,
you may have to adjust your values
slightly to make it look the same.

9

Task 3 - Controlling individual LEDs - part 2

Create a new program to create your
own image.

Flash the program to your micro:bit, to
see your image displayed.

Credit: micro:bit Foundation

10

Task 4 - Sparkle challenge

Complete the program below to set
random pixels to a random brightness
level and create a sparkling effect on
the micro:bit display.

from microbit import *
from random import randint
while True:
 x = randint(?,?)
 y = randint(?,?)
 brightness = randint(?,?)
 display.set_pixel(x, y, brightness)

11

