Maths

1. Show that the equation $x^2 + 2x = 3$ can be rearranged to each of the following equations.

a)
$$x = \sqrt{3 - 2x}$$

b)
$$x = \frac{3 - x^2}{2}$$

2. Show that the following iterative formulae can be rearranged from the equation $x^2 - 5x + 9 = 0$

a)
$$x_{n+1} = \sqrt{5x_n - 9}$$

b)
$$x_{n+1} = 5 - \frac{9}{x_n}$$

3. Show that the equation $x^3 + 2x = 1$ can be rearranged to each of the following equations.

a)
$$x = \sqrt[3]{1 - 2x}$$

b)
$$x = \sqrt{\frac{1}{x} - 2}$$

c)
$$x = \frac{1 - 2x}{x^2}$$

4. Millie is solving the following equation.

$$x^3 + x^2 = 5$$

She wants to form an iterative equation to use.

Show that one possible iterative equation is

$$x_{n+1} = \sqrt{\frac{5}{x_n} - x_n}$$

Answers

1. Show that the equation $x^2 + 2x = 3$ can be rearranged to each of the following equations.

a)
$$x = \sqrt{3 - 2x}$$
 $x^2 = 3 - 2x$ $x = \sqrt{3 - 2x}$

b)
$$x = \frac{3 - x^2}{2}$$
 $x = \frac{3 - x^2}{2}$

2. Show that the following iterative formulae can be rearranged from the equation $x^2 - 5x + 9 = 0$

a)
$$x_{n+1} = \sqrt{5x_n - 9}$$
 $x^2 = 5x - 9$
 $x = \sqrt{5x - 9}$

b)
$$x_{n+1} = 5 - \frac{9}{x_n}$$
 $x - 5 + \frac{9}{x} = 0$ $x = 5 - \frac{9}{x}$

3. Show that the equation $x^3 + 2x = 1$ can be rearranged to each of the following equations.

a)
$$x = \sqrt[3]{1 - 2x}$$
 First step $x^3 = 1 - 2x$

b)
$$x = \sqrt{\frac{1}{x} - 2}$$
 First step $x^2 + 2 = \frac{1}{x}$

c)
$$x = \frac{1-2x}{x^2}$$
 First step $x^3 = 1-2x$

4. Millie is solving the following equation.

$$x^3 + x^2 = 5$$

She wants to form an iterative equation to use. $x^3 + x^2 = 5$

Show that one possible iterative $x^2 + x = \frac{5}{x}$ equation is $x^2 = \frac{5}{x} - x$

$$x_{n+1} = \sqrt{\frac{5}{x_n} - x_n} \qquad x = \sqrt{\frac{5}{x} - x}$$

