Solving equations numerically : Rearrange to form iterative equations

Maths

Mr Clasper

Solving equations numerically : Rearrange to form iterative equations

1. Show that the equation $x^{2}+2 x=3$ can be rearranged to each of the following equations.
a) $x=\sqrt{3-2 x}$
b) $x=\frac{3-x^{2}}{2}$
2. Show that the following iterative formulae can be rearranged from the equation $x^{2}-5 x+9=0$
a) $x_{n+1}=\sqrt{5 x_{n}-9}$
b) $x_{n+1}=5-\frac{9}{x_{n}}$

Solving equations numerically : Rearrange to form iterative equations

3. Show that the equation $x^{3}+2 x=1$ can be rearranged to each of the following equations.
a) $x=\sqrt[3]{1-2 x}$
b) $x=\sqrt{\frac{1}{x}-2}$
c) $x=\frac{1-2 x}{x^{2}}$
4. Millie is solving the following equation.

$$
x^{3}+x^{2}=5
$$

She wants to form an iterative equation to use.

Show that one possible iterative equation is

$$
x_{n+1}=\sqrt{\frac{5}{x_{n}}-x_{n}}
$$

Answers

Solving equations numerically : Rearrange to form iterative equations

1. Show that the equation $x^{2}+2 x=3$ can be rearranged to each of the following equations.
a) $x=\sqrt{3-2 x}$

$$
\begin{aligned}
& x^{2}=3-2 x \\
& x=\sqrt{3-2 x}
\end{aligned}
$$

b) $x=\frac{3-x^{2}}{2}$

$$
\begin{aligned}
& 2 x=3-x^{2} \\
& x=\frac{3-x^{2}}{2}
\end{aligned}
$$

2. Show that the following iterative formulae can be rearranged from the equation $x^{2}-5 x+9=0$
a) $x_{n+1}=\sqrt{5 x_{n}-9}$

$$
\begin{aligned}
& x^{2}=5 x-9 \\
& x=\sqrt{5 x-9}
\end{aligned}
$$

b) $x_{n+1}=5-\frac{9}{x_{n}} \quad x-5+\frac{9}{x}=0$

$$
x=5-\frac{9}{x}
$$

Solving equations numerically : Rearrange to form iterative equations

3. Show that the equation $x^{3}+2 x=1$ can be rearranged to each of the following equations.
a) $x=\sqrt[3]{1-2 x}$

$$
\begin{aligned}
& \text { First step } \\
& x^{3}=1-2 x
\end{aligned}
$$

b) $x=\sqrt{\frac{1}{x}-2}$

> First step
> $x^{2}+2=\frac{1}{x}$
c) $x=\frac{1-2 x}{x^{2}}$

First step

$$
x^{3}=1-2 x
$$

4. Millie is solving the following equation.

$$
x^{3}+x^{2}=5
$$

She wants to form an iterative equation to use.

$$
x^{3}+x^{2}=5
$$

Show that one possible iterative $x^{2}+x=\frac{5}{x}$ equation is

$$
x^{2}=\frac{5}{x}-x
$$

$$
x_{n+1}=\sqrt{\frac{5}{x_{n}}-x_{n}} \quad x=\sqrt{\frac{5}{x}-x}
$$

