Lesson 3 - Resultant Forces

Physics - KS3

Forces and Motion

Mrs Wolstenholme

Balanced

Unbalanced

Balanced

How does this affect the motion of the car?

Balanced

- No effect on the motion.
- If the object is stationary it will remain stationary.
- If the object is moving it will continue at a **constant** speed and in the **same**

For forces to be balanced, opposing forces must have the same

Option 3

Grades

Option 4

Friends

If forces on an object are balanced, what will happen to its speed?

Option 3

Not change

Option 4

Disappear

If forces on an object are balanced, what will happen to its direction?

Turn left

Option 2

Turn right

Option 3

Not change

Option 4

Disappear

A person rides a bike at a constant speed in a straight line. What can we say about the forces?

The forces are unbalanced.

How does this affect the motion of the car? Unbalanced

Change in speed. larger force.

- Accelerates in the direction of the
- Change in direction.

For forces to be unbalanced, opposing forces must have be

Option 1

The same direction

Option 2

The same size

Option 3

Different sizes

Option 4

Friends

If forces on an object are unbalanced, what could happen to its speed? (2 answers)

Increase

Option 2

Decrease

Option 3

Not change

Option 4

Disappear

If forces on an object are unbalanced, what could happen to its direction?

Get larger

Option 2

Change

Option 3

Not change

Option 4

Disappear

A person accelerates as they ride a bike in a straight line. What can we say about the forces?

The forces are unbalanced.

A person rides a bike at constant speed and turns left. What can we say about the forces?

Option 3

There are exactly 1000 forces.

Option 4

There are no forces.

The forces are unbalanced.

What will happen to this object?

Remain stationary.

100 N

What will happen to this object?

30,000 N

30,000 N

Accelerate to the right.

12,000 N

20,000 N

Example	Picture	Credit: no
	Description	Trolley is accelerat
	Free Body Diagram	Normal Contact Friction
	Balanced or Unbalanced?	Unbalanced. Push friction because it

Picture		LGM	Credit: no attribution required
Description	The ice skater is slowing down	The plane is accelerating upwards and forwards.	The car is travelling at a constant speed.
Free Body Diagram			
Balanced or Unbalanced?			

Picture			Credit: no attribution required
Description	The parachutist is accelerating towards the Earth	The parachutist is moving downwards at a constant speed	The speed boat is slowing down.
Free Body Diagram			
Balanced or Unbalanced?			

Resultant Force -> Overall Force

Air resistance = 200 N

Credit: public domain

Normal Contact = 100 N

Resultant Force -> Overall Force

Credit: public domain

Resultant Force -> Overall Force

Same Direction: Add together

Opposite Directions: Subtract

Resultant Force = 600 - 50 = 550 N down

Resultant Force = 20 - 18 = 2 N left

Your Turn: Calculating resultant force 20 N 18 N Resultant Force = 5 N 55 N Resultant Force = 2.4 N 1.1 N Resultant Force =

Putting it together

This motorcycle is **travelling along** the road. Describe the effect of the forces on its motion.

Resultant Force = 300 - 300 = 0 N

The motorcycle will continue at a constant

Your Turn: Putting it together

The cyclist is moving forwards. Calculate the resultant force and state what will happen to the cyclist (Accelerate, decelerate, or constant speed)

Your Turn: Putting it together

The skateboarder is stationary. Calculate the resultant force and state which direction they will move in.

Well Done!

