Rock salt

Chemistry - Key Stage 3
Particles - Lesson 10

Miss Mason

Recap

1. Which separating technique should be used to separate an insoluble solid from a solution?
2. Which separating technique should be used to separate a soluble solid from a solution?
3. Define the words 'soluble' and 'insoluble'.

Soluble is used to describe something that can be d \qquad and insoluble is used to describe something that can't be d \qquad .
4. What is the missing mass value in this chemical reaction?

Acid + Alkali \rightarrow Salt + Water
[15g] [13g] [8g] [???]
5. Compare melting to freezing.

Melting is the change of state that takes place from a \qquad to a \qquad whereas freezing is the change of state that occurs from a \qquad to a \qquad In melting, the particles move \qquad
\qquad but in freezing, the particles move \qquad _.

Put the following steps in the correct order

Tip the salt solution into an evaporating basin and leave in a drying oven overnight

> Add the mixture to a beaker and stir using a stirring rod

Measure the mass of salt in the evaporating basin once all of the water has evaporated off

Measure the mass of the rock salt mixture
Filter mixture into a conical flask using a funnel and filter paper
Grind the mixture using a pestle and mortar to crush the rocks and release any salt they may have trapped inside them

Independent task

1. Starting mass of rock salt: $\mathbf{1 1 g}$

Final mass of pure salt: $\mathbf{7 . 3 g}$
Percentage yield (to whole number) =
2. Starting mass of rock salt: $\mathbf{3 3 . 1} \mathbf{g}$

Final mass of pure salt: $\mathbf{1 8 . 2 g}$
Percentage yield (to whole number) =
3. Starting mass of rock salt: $\mathbf{2 5 4} \mathbf{g}$

Final mass of pure salt: $\mathbf{1 7 8 . 6 g}$
Percentage yield (to 1 decimal place) =
4. Starting mass of rock salt: $\mathbf{3 1 2 4 . 9 g}$

Final mass of pure salt: $\mathbf{2 2 9 8 . 6 5 g}$
Percentage yield (to 2 decimal places) =

1. Describe how you would use various separating techniques to obtain pure salt from rock salt.
2. Calculate the percentage yield if the starting rock salt mass was 34 g and the final mass of pure salt was 16.8 g (give your answer to 1 decimal place).

Equipment list:

- Stirring rod
- Beaker
- Filter paper
- Evaporating basin
- Funnel
- Pestle and mortar
- Conical flask

Problem	Possible cause	Suggestion for improvement
Salt at the end was still dirty	Filter f__ overfilled	Make sure solutions do not reach the top of f \qquad p \qquad
Salt at the end was still dirty	H \qquad in filter paper caused by stirring	Don't s___ while filtering
Salt at the end was still dirty	D \qquad conical flask or evaporating dish	C \qquad all equipment before starting
\% salt was low	Not all the salt d \qquad in the water	Use \qquad water (to increase chance of dissolving)
\% salt was low	Some salt left in the b___	Rinse out the b___
\% salt was low	Some salt left on the f \qquad P. \qquad	Rinse the f__ P___

