Lesson 7 - Pressure

Physics - KS3

Forces and Motion

Mrs Wolstenholme

What is pressure?

Pressure is related to how spread out a force is over an area.

Complete the task

What is pressure?

Pressure is related to how _____ out a _____ is over a certain ______. We use the sharp part of the pin because it has a _____ area which means there will be a _____ pressure.

Calculating Pressure

Calculating Pressure

A hammer strikes a nail with a force of 200 N.) The nail has a surface area of 0.1 m². What is the pressure on the nail?

Pressure = Force ÷ Area Pressure = $200 \div 0.1$ Pressure = 2000 Pa

Calculating Pressure

A hammer strikes a mail with a force of 100N. The nail has a surface area of 100 cm^2 . What is the pressure on the nail?

Pressure = Force ÷ Area Pressure = $100 \div 100$ Pressure = 1 N/cm^2

If the unit of area is given as cm² what is the unit of pressure?

 N/cm^2

Option 2

 N/m^2

Option 3

Kilogram (kg)

Option 4

Pa

If the unit of area is given as m² what is the unit of pressure?

 N/cm^2

 N/m^2

Option 3

Kilogram (kg)

Option 4

Pa

Calculating Pressure: Your Turn

Pressure Force Area = • (Pa) (m^2) (N) (N/cm^2) (cm^2)

A hammer strikes a nail with a force of 750 N. The nail has a surface area of 0.1 m². What is the pressure on the nail?

Pressure = Force ÷ Area

Calculating Pressure: Your Turn

Pressure Force Area \equiv • (m^{2}) (Pa) (N) (N/cm^2) (cm^2)

A hammer strikes a nail with a force of 600N. The nail has a surface area of 200 cm². What is the pressure on the nail?

Independent Practice

Force Pressure Area = • (m^2) or (cm^2) $(Pa) \text{ or } (N/cm^2)$ (N)

- 1. A woman in stilettos, stands on a man's foot with a force of 500 N. If the stilettos have a surface area of 0.01 m^2 , what pressure is exerted on the man's foot?
- 2. A football has a surface area of 0.5m². If the football hits a wall with a force of 200 N, what pressure does the ball exert on the wall?
- 3. A bullet hits a pane of glass. If the bullet has a surface area of 0.5cm², and strikes the glass with a force of 10,000 N what pressure does this exert on the glass?

Calculating Force

Pressure	=	Force	•	Area
(Pa) (N/cm²)		(N)		(m²) (cm²)

A zoologist worked out that the pressure an elephant exerts on the ground is 128000 N/m². The area of the elephant's feet is 0.5 m².

Pressure = Force ÷ Area $128000 = Force \div 0.5$ 128000 x 0.5 = Force ÷ 0.5 x 0.5 128000 **x 0.5** = Force 64 000 = Force -> Force = 64 000 N

What is the next step?

Option 3

Option 4

400 **x 4** = Force ÷ 4 ÷ 4

PANIC!!

2

400 **÷ 4** = Force ÷ 4 **÷ 4**

What is the next step?

Option 1

600 **÷ 2** = Force ÷ 2 **÷ 2**

Option 3

Option 4

600 **x 3** = Force \div 2 **x 3**

PANIC!!

Option 2

600 **x 2** = Force ÷ 2 **x 2**

What is the next step?

450 = Force \div 10

Option 1

 $450 \times 10 =$ Force $\div 10 \times 10$

Option 3

Option 4

PANIC!!

 $450 \times 450 =$ Force $\div 10 \times 450$

Option 2

$450 \div 10 = Force \div 10 \div 10$

Calculating Force: Your Turn

When 0.02 m² basketball hits a wall; the pressure applied is 30,000 Pa. What force did the basketball hit the wall with?

Pressure = Force \div Area

Calculating Force: Your Turn

Pressure	=	Force	•	Area
(Pa) (N/cm²)		(N)		(m²) (cm²)

A runner exerts 450,000 Pa of pressure during a footstep. The area of her foot is 0.1 m^2 . Calculate the force.

Which is better for walking on mud?

The elephant foot has a **large area**. This means the force will be spread out over a large area and the pressure will be **low**.

The horse hoof has a **small area**. This means the force will be spread out over a small area and the pressure will be high.

We want a **small** pressure so we don't get stuck in the mud! So the elephant foot is better.

Which is better for walking in snow?

- What will the pressure of the snow shoes be like? Why?
- What will the pressure of the high heels be like? Why
- Overall, which is better for walking in snow?

High heels <u>vs</u> Snow shoes

Which is better for walking in snow?

High heels \underline{vs} Snow shoes

The snow shoes have a _____ area. This means the force will be _____ out over a large area and the pressure will be _____.

The high heels have a _____ area. This means the force will be _____ out over a small area and the pressure will be

We want a _____ pressure so we don't sink into the snow! So the _____ are better.

Extra Practice

- 1. Calculate the pressure of a knife with an area of 0.005 m^2 and a force of 40N.
- 2. Calculate the pressure of a shoe with an area of $0.02m^2$ and a force of 1400N.
- 3. Calculate the pressure of a car tyre with an area of 0.5m² and a force of 14500N.
- 4. Calculate the pressure if a car crashes into a wall with 25000N and with a front area of $199 \mathrm{cm}^2$
- 5. A woman of mass 47.5kg on Earth stands in a pair of shoes with an area of 0.003m². Calculate the pressure she is exerting on the ground. (Hint: First calculate her WEIGHT.) The gravitational field strength is 10 N/kg)
- 6. A child of mass 50.4kg on Earth lies on the bed with an area of 0.75m². Calculate the pressure the child is exerting on the bed.

Extra Practice: Answers

- 1. 40 ÷ 0.005 = 8000 Pa
- 2. 1400 ÷ 0.02 = 70 000 Pa
- 3. 14500÷ 0.5 = 29 000 Pa
- 4. $25000 \div 199 = 126 \text{ N/cm}^2$
- 5. Calculate weight: 47.5 x 10 = 475 N Calculate pressure: 475 ÷ 0.003 = 158 333 Pa
- 6. Calculate weight: 50.4x 10 = 504 N Calculate pressure: 504 N \div 0.75 m² = 672 Pa

75 ÷ 0.003 = 158 333 Pa 04 N ÷ 0.75 m² = 672 Pa

