Lesson 7 - Pressure

Physics-KS3

Forces and Motion

Mrs Wolstenholme

What is pressure?

Pressure is related to how spread out a force is over an area.

Complete the task

What is pressure?

Pressure is related to how \qquad out a ___ is over a certain \qquad _.
We use the sharp part of the pin because it has a \qquad area which means there will be a \qquad pressure.

Calculating Pressure

Pressure	$=$	Force
$\left(\mathbf{N} / \mathbf{m}^{2}\right)$		Area
$(\mathbf{P a})$		(N)
$\left(\mathbf{N}^{2}\right)$	$\left(\mathbf{m}^{2}\right)$	

Calculating Pressure

Pressure	Force	\div
(Pa)	(N)	
$\left(\mathrm{N} / \mathrm{cm}^{2}\right)$		
		$\left(\mathrm{m}^{2}\right)$

A hammer strikes angail with a force of 200 N . The nail has a surface area of $0.1 \mathrm{~m}^{2}$. What is the pressureon the nail?

Pressure $=$ Force \div Area
Pressure $=200 \div 0.1$
Pressure $=2000 \mathrm{~Pa}$

Calculating Pressure

Pressure	Force	\div
(Pa)	(N)	
$\left(\mathrm{N} / \mathrm{cm}^{2}\right)$		$\left(\mathrm{m}^{2}\right)$
$\left(\mathrm{cm}^{2}\right)$		

A hammer strikes maik with a force of 100 N . The nail has a surface area of $100 \mathrm{~cm}^{2}$. What is the pressure on the nail?

Pressure $=$ Force \div Area
Pressure $=100 \div 100$
Pressure $=1 \mathrm{~N} / \mathrm{cm}^{2}$

If the unit of area is given as cm^{2} what is the unit of pressure?

Option 1
$\mathrm{N} / \mathrm{cm}^{2}$

Option 3

Kilogram (kg)

Option 2
$\mathrm{N} / \mathrm{m}^{2}$

Option 4

Pa

If the unit of area is given as \mathbf{m}^{2} what is the unit of pressure?

Option 1
$\mathrm{N} / \mathrm{cm}^{2}$

Option 3

Kilogram (kg)

Option 2
$\mathrm{N} / \mathrm{m}^{2}$

Option 4

Pa

Calculating Pressure: Your Turn

Pressure	Force	\div
(Pa)	(N)	
$\left(\mathrm{N} / \mathrm{cm}^{2}\right)$		
		$\left(\mathrm{m}^{2}\right)$
$\left(\mathrm{cm}^{2}\right)$		

A hammer strikes a nail with a force of 750 N . The nail has a surface area of $0.1 \mathrm{~m}^{2}$. What is the pressure on the nail?

Pressure $=$ Force \div Area

Calculating Pressure: Your Turn

Pressure	Force	\div
(Pa)	(N)	
$\left(\mathrm{N} / \mathrm{cm}^{2}\right)$		
		$\left(\mathrm{m}^{2}\right)$
$\left(\mathrm{cm}^{2}\right)$		

A hammer strikes a nail with a force of 600N. The nail has a surface area of $200 \mathrm{~cm}^{2}$. What is the pressure on the nail?

Independent Practice

Pressure $=$ Force \div Area
(Pa) or $\left(\mathrm{N} / \mathrm{cm}^{2}\right)$
$(N) \quad\left(\mathrm{m}^{2}\right)$ or $\left(\mathrm{cm}^{2}\right)$

1. A woman in stilettos, stands on a man's foot with a force of 500 N . If the stilettos have a surface area of $0.01 \mathrm{~m}^{2}$, what pressure is exerted on the man's foot?
2. A football has a surface area of $0.5 \mathrm{~m}^{2}$. If the football hits a wall with a force of 200 N , what pressure does the ball exert on the wall?
3. A bullet hits a pane of glass. If the bullet has a surface area of $0.5 \mathrm{~cm}^{2}$, and strikes the glass with a force of $10,000 \mathrm{~N}$ what pressure does this exert on the glass?

Calculating Force

Pressure	Force	\div
(Pa)	(N)	
$\left(\mathrm{N} / \mathrm{cm}^{2}\right)$		$\left(\mathrm{m}^{2}\right)$
$\left(\mathrm{cm}^{2}\right)$		

A zoologist worked out that the pressure an elephant exerts on the ground is $128000 \mathrm{~N} / \mathrm{m}^{2}$. The area of the elephant's feet is $0.5 \mathrm{~m}^{2}$.

```
Pressure = Force % Area
128000 = Force \div 0.5
128000 x 0.5 = Force }\div0.5\times0.
128000 x 0.5 = Force
64000 = Force -> Force = 64 000 N
```


What is the next step?

$400=$ Force $\div 4$

Option 1

$400 \times 4=$ Force $\div 4 \times 4$

Option 3

$400 \times 4=$ Force $\div 4 \div 4$

Option 2

$400 \div 4=$ Force $\div 4 \div 4$

Option 4

PANIC!!

What is the next step?

$$
600=\text { Force } \div 2
$$

Option 1

$$
600 \div 2=\text { Force } \div 2 \div 2
$$

Option 3

```
600 < 3 = Force }\div2\times
```


Option 2

$600 \times 2=$ Force $\div 2 \times 2$

Option 4

PANIC!!

What is the next step?

$$
450=\text { Force } \div 10
$$

Option 1

$450 \times 10=$ Force $\div 10 \times 10$

Option 3

$450 \times 450=$ Force $\div 10 \times 450$

Option 2

$450 \div 10=$ Force $\div 10 \div 10$

Option 4

PANIC!!

Calculating Force: Your Turn

When $0.02 \mathrm{~m}^{2}$ basketball hits a wall; the pressure applied is $30,000 \mathrm{~Pa}$. What force did the basketball hit the wall with?

$$
\text { Pressure }=\text { Force } \div \text { Area }
$$

Calculating Force: Your Turn

Pressure	$=$ Force	\div
(Pa)	(N)	
$\left(\mathrm{N} / \mathrm{cm}^{2}\right)$		$\left(\mathrm{m}^{2}\right)$ $\left(\mathrm{cm}^{2}\right)$

A runner exerts 450,000 Pa of pressure during a footstep. The area of her foot is $0.1 \mathrm{~m}^{2}$. Calculate the force.

Which is better for walking on mud?

The elephant foot has a large area.
This means the force will be spread out over a large area and the pressure will be low.

The horse hoof has a small area. This means the force will be spread out over a small area and the pressure will be high.

We want a small pressure so we don't get stuck in the mud! So the elephant foot is better.

Which is better for walking in snow?

- What will the pressure of the snow shoes be like? Why?
- What will the pressure of the high heels be like? Why
- Overall, which is better for walking in snow?

High heels vs Snow shoes

Which is better for walking in snow?

High heels vs Snow shoes

The snow shoes have a \qquad area.
This means the force will be \qquad out over a large area and the pressure will be \qquad _.

The high heels have a \qquad area. This means the force will be \qquad out over a small area and the pressure will be

We want a \qquad pressure so we don't sink into the snow! So the
\qquad are better.

Extra Practice

1. Calculate the pressure of a knife with an area of $0.005 \mathrm{~m}^{2}$ and a force of 40 N .
2. Calculate the pressure of a shoe with an area of $0.02 \mathrm{~m}^{2}$ and a force of 1400 N .
3. Calculate the pressure of a car tyre with an area of $0.5 \mathrm{~m}^{2}$ and a force of 14500 N .
4. Calculate the pressure if a car crashes into a wall with 25000 N and with a front area of $199 \mathrm{~cm}^{2}$
5. A woman of mass 47.5 kg on Earth stands in a pair of shoes with an area of $0.003 \mathrm{~m}^{2}$. Calculate the pressure she is exerting on the ground. (Hint: First calculate her WEIGHT. The gravitational field strength is $10 \mathrm{~N} / \mathrm{kg}$)
6. A child of mass 50.4 kg on Earth lies on the bed with an area of $0.75 \mathrm{~m}^{2}$. Calculate the pressure the child is exerting on the bed.

Extra Practice: Answers

1. $40 \div 0.005=8000 \mathrm{~Pa}$
2. $1400 \div 0.02=70000 \mathrm{~Pa}$
3. $14500 \div 0.5=29000 \mathrm{~Pa}$
4. $25000 \div 199=126 \mathrm{~N} / \mathrm{cm}^{2}$
5. Calculate weight: $47.5 \times 10=475 \mathrm{~N}$ Calculate pressure: $475 \div 0.003=158333 \mathrm{~Pa}$
6. Calculate weight: $50.4 \times 10=504 \mathrm{~N}$ Calculate pressure: $504 \mathrm{~N} \div 0.75 \mathrm{~m}^{2}=672 \mathrm{~Pa}$
