Computing

Lesson 2: A Splash of Colour

Data Representation

Dharini Krishnamoorthy

Task 1 - Pick and mix colours

Steps	Instructions
Visit the RGB Colour Mixer	You do not need to give specific
(oaknat.uk/comp-csfg-rgb-mixer) on	
values; any shade of the colours will do.	
the Computer Science Field Guide	
website. website.	The point is for you to experiment with how mixing elementary colours produces the desired ones.

Task 1.1: Pick and mix colours

The table on the right contains specific values of red, green, and blue.

Write down the colour that you get when you mix red, green, and blue in these quantities.

Fill in the table below:

Red	Green	Blue	Composite colour
255	255	0	
160	0	160	
128	128	128	

Task 1.2: Pick and mix colours

The table on the right contains specific colours.

Write down the values of red, green, and blue that you need to mix in order to produce these colours.

Fill in the table below:

Red	Green	Blue	Composite colour
			Orange
			Brown
			White

Task 2 - Representation Size

The two factors that determine the representation size of an image are its resolution (how many pixels it comprises) and its colour depth (how many bits or bytes are used to represent the colour of a pixel).

Representation size $=$Resolution of a bitmap image number of pixels$\times \quad$Colour depth number of bits or bytes for each pixel's colour

If the colour depth of an image is not specified, you can assume that it is 24 bits. This is the most common value in contemporary bitmap images.

Task 2 - Worked example to compute image size:

What is the representation size, in bits and bytes, of a bitmap image with a resolution of 800×600 and a colour depth of 24 bits.

| Representation
 size | $=$ resolution \times | \times colour depth |
| :--- | :--- | :--- | :--- |
| | $=800 \times 600$ pixels $\times 24$ bits per pixel | |
| | $=480,000$ pixels $\times 24$ bits per pixel | |
| | $\mathbf{1 1 , 5 2 0 , 0 0 0}$ bits (or 11.5 megabits) | |

Task 2 - Worked example to compute image size:

You could convert bits to bytes by dividing by 8 . You could also calculate the size in bytes directly, since 24 bits is 3 bytes:

Representation size	$=$ resolution	\times	colour depth
	$=480,000$ pixels	\times	3 bytes per pixel

1,440,000 bytes (or 1.44 megabytes)

Task 2 : Representation Size

- On the right you can see the image of Van Gogh's famous The Starry Night painting.
- This image has been reduced to a resolution of 640×500, with a colour depth of 3 bytes.

Tasks:

1. Use this information to calculate the number of bytes required to represent this image.
2. Convert this size to megabytes.

Credit: Van Gogh, The Starry Night image:Pixabay

