Find the nth term of a quadratic sequence

Miss Parnham

Find the nth term of a quadratic sequence

1. a) Generate the first 5 terms of the sequence with nth term $n^{2}+3$
b) Find the $2^{\text {nd }}$ difference.

This table may help.

n	1	2	3	4	5
$n^{2}+3$					
$7^{\text {st }}$ difference					
$2^{\text {nd }}$ difference					

Find the $2^{\text {nd }}$ difference of sequences with nth term
a) $2 n^{2}+1$
b) $3 n^{2}-2$
2. Match the pairs.
nth term
$2 n^{2}-n$

$$
n^{2}+3 n-7
$$

$$
4 n^{2}+3 n
$$

$$
-3 n^{2}-5
$$

$0.5 n^{2}+n-1$
$2^{\text {nd }}$ difference
-6

4

```
1
```

2

8
3. What is the link between the $2^{\text {nd }}$ difference and the n^{2} coefficient of the nth term?

Find the nth term of a quadratic sequence

4. Find the nth term of these
sequences.
a) $-7,-4,1,8,17, \ldots$
b) $6,14,24,36,50, \ldots$
c) $6,7,10,15,22, \ldots$
d) $1,10,25,46,73, \ldots$
e) $0,11,26,45,68, \ldots$
f)

5. Find the nth term of these sequences.
a) $3,0,-5,-12,-21, \ldots$
b) $-2,-4,-8,-14,-22, \ldots$
c) $8,2,-8,-22,-40, \ldots$
6. What is the nth term for the sequence made by these patterns?

Is 204 in this sequence?

Answers

Find the nth term of a quadratic sequence

1. a) Generate the first 5 terms of the sequence with nth term $n^{2}+3$
b) Find the $2^{\text {nd }}$ difference.

This table may help.

Find the $2^{\text {nd }}$ difference of sequences with nth term
a) $2 n^{2}+1$
b) $3 n^{2}-2$
2. Match the pairs.

3. What is the link between the $2^{\text {nd }}$ difference and the n^{2} coefficient of the nth term? Half of the $2^{\text {nd }}$ difference is the n^{2} coefficient.

Find the nth term of a quadratic sequence

4 . Find the nth term of these sequences.
a) $-7,-4,1,8,17, \ldots \quad n^{2}-8$
b) $6,14,24,36,50, \ldots \quad n^{2}+5 n$
c) $6,7,10,15,22, \ldots \quad n^{2}-2 n+7$
d) $1,10,25,46,73, \ldots \quad 3 n^{2}-2$
e) $0,11,26,45,68, \ldots 2 n^{2}+5 n-7$
f)

$$
n^{2}+2 n-1
$$

5. Find the nth term of these sequences.
a) $3,0,-5,-12,-21, \ldots-n^{2}+4$
b) $-2,-4,-8,-14,-22, \ldots-n^{2}+n-2$
c) $8,2,-8,-22,-40, \ldots-2 n^{2}+10$
6. What is the nth term for the sequence made by these patterns?

Is 204 in this sequence?
No, because $\sqrt{204-4}$ is not an integer

