Chemical formulae and conservation of mass

Task 1: Reading formulae

Write out the name and number of atoms of each element in each formula.

a) CO_2

e) Ca(OH)₂

b) NaCl

f) Fe_2O_4

c) H₂SO₄

g) $Al_2(SO_4)_3$

d) CaCO₃

h) $Cu(NH_3)_4(H_2O)_2$

Task 2: Conservation of mass

a) Answer the questions using the equation and masses provided.

i) What is the mass of the reactant?

ii) What is the mass of each product?

iii) What is the total mass of the products?

iv) Does this experiment data support the law of conservation of mass? Explain why.

b) **Calculate** the missing masses for each reaction.

i) magnesium + oxygen \rightarrow magnesium oxide ? + 32 g \rightarrow 80.6 g

ii) lithium + oxygen \rightarrow lithium oxide 21.9 g + 8 g \rightarrow ?

iii) sodium + oxygen \rightarrow sodium oxide + oxygen 46 g + 32 g \rightarrow 62 g + ?

- c) Calculate the missing masses for each reaction.
- i) 4 grams of hydrogen reacts with oxygen to make 36 grams of water. **Calculate** the amount of oxygen used by applying the law of conservation of mass.
- ii) In a chemical reaction, 150 g sodium bicarbonate and vinegar on heating gives off 87 g of carbon dioxide gas. **What mass** of solid residue is left?
- iii) When 0.0976 g of magnesium is heated in air, 0.1618 g of magnesium oxide is produced. **What mass** of oxygen is need to produce 0.1618 g of magnesium oxide?

Task 4: Balancing equations

Balance the equations.

1) Zn +
$$O_2$$
 \rightarrow ZnO

2)
$$Cl_2 + Al \rightarrow AlCl_3$$

3) Na +
$$O_2$$
 \rightarrow Na₂O

4) Mg + HCl
$$\rightarrow$$
 MgCl₂ + H₂

5)
$$Fe_2O_3 + AI \rightarrow Fe + AI_2O_3$$

Chemical formulae and conservation of mass

6

Task 1: Reading formulae

Write out the name and number of atoms of each element in each formula.

a) CO₂ I carbon, 2 oxygen

e) Ca(OH)₂ I calcium, 2 oxygen, 2 hydrogen

b) NaCl I sodium, I chlorine

f) Fe₂O₄ 2 iron, 4 oxygen

c) H₂SO₄ 2 hydrogen, I sulfur, 4 oxygen

g) $Al_2(SO_4)_3$

oxygen

2 aluminium, 3 sulfur, 12

d) CaCO₃ I calcium, I carbon, 3 oxygen

h) Cu(NH₃)₄(H₂O)₂ I copper, 4 nitrogen,

16 hydrogen, 2 oxygen

Task 2: Conservation of mass

a) Answer the questions using the equation and masses provided.

 $\begin{array}{ll} \textbf{reactant} & \textbf{products} \\ \textbf{calcium carbonate} \rightarrow & \textbf{calcium oxide + carbon dioxide} \end{array}$

200 g 112 g 88 g

i) What is the mass of the reactant? 200 q

ii) What is the mass of each product? 112 g and 88 g

iii) What is the total mass of the products? 200 g

iv) Does this experiment data support the law of conservation of mass? **Explain** why.

Yes, the total mass of the reactant is equal to the total mass of the products no mass has been lost or gained.

b) **Calculate** the missing masses for each reaction.

i) magnesium + oxygen → magnesium oxide

48.6 g + $32 g \rightarrow 80.6 g$

ii) lithium + oxygen \rightarrow lithium oxide

21.9 g + 8 g \rightarrow 29.9 g

iii) sodium + oxygen \rightarrow sodium oxide + oxygen

46 g + 32 g \rightarrow 62 g + 16 g

- c) Calculate the missing masses for each reaction.
- i) 4 grams of hydrogen reacts with oxygen to make 36 grams of water. **Calculate** the amount of oxygen used by applying the law of conservation of mass.

$$36 q - 4 q = 32 q$$

ii) In a chemical reaction, 150 g sodium bicarbonate and vinegar on heating gives off 87 g of carbon dioxide gas. **What mass** of solid residue is left?

$$150 g - 87 g = 63 g$$

iii) When 0.0976 g of magnesium is heated in air, 0.1618 g of magnesium oxide is produced. **What mass** of oxygen is need to produce 0.1618 g of magnesium oxide?

$$0.1618 g - 0.0976 g = 0.0642 g$$

Task 4: Balancing equations

Balance the equations.

1) **2** Zn +
$$O_2$$
 \rightarrow **2** ZnO

2) 3
$$Cl_2$$
 + 2 Al \rightarrow 2 $AlCl_3$

3) 4 Na +
$$O_2$$
 \rightarrow 2 Na₂O

4) Mg + 2 HCl
$$\rightarrow$$
 MgCl₂ + H₂

5)
$$Fe_2O_3 + 2 AI \rightarrow 2 Fe + AI_2O_3$$