Solve where $y=$ and $y=$ (setting the equations equal to one another)
Maths

Mrs Dennett

Solve where $\boldsymbol{y}=$ and $\boldsymbol{y}=$

1. Solve these pairs of equations.
a)

$$
\begin{aligned}
& y=x^{2} \\
& y=2 x+3
\end{aligned}
$$

b) $\quad y=x^{2}-14$

$$
y=10-5 x
$$

2. Solve this pair of equations

$$
\begin{aligned}
& y=x^{2}+4 x-3 \\
& y=4 x
\end{aligned}
$$

3. Verify that $x=2.62$ and $y=6.85$ (correct to 2 decimal places) is a solution to both these equations.

$$
\begin{aligned}
& y=x^{2} \\
& y=3 x-1
\end{aligned}
$$

What is the other solution?

Solve where $\boldsymbol{y}=$ and $\boldsymbol{y}=$

4. Matt is solving the simultaneous equations.

$$
\begin{aligned}
& y=x^{2}+4 \\
& y=6 x-4
\end{aligned}
$$

He equates the two expressions for y and starts to rearrange.

$$
\begin{gathered}
x^{2}+4=6 x-4 \\
x^{2}-6 x=0
\end{gathered}
$$

Where has Matt gone wrong?
Correct Matt's work and go on to solve the simultaneous equations.

Answers

Solve where $\boldsymbol{y}=$ and $\boldsymbol{y}=$

1. Solve these pairs of equations.
a) $y=x^{2}$

$$
y=2 x+3
$$

$x=3$ and $\mathrm{y}=9$ and $x=-1$ and $\mathrm{y}=1$
b)

$$
\begin{aligned}
& y=x^{2}-14 \\
& y=10-5 x
\end{aligned}
$$

$x=3$ and $\mathrm{y}=-5$ and $x=-8$ and $\mathrm{y}=50$
2. Solve this pair of equations

$$
\left.\begin{array}{ll}
y=x^{2}+4 x-3 & x=\sqrt{3} \text { and } y=4 \sqrt{3} \\
\text { and }
\end{array}\right]=\begin{array}{ll}
y=4 x & x=-\sqrt{3} \text { and } y=-4 \sqrt{3}
\end{array}
$$

3. Verify that $x=2.62$ and $y=6.85$ (correct to 2 decimal places) is a solution to both these equations, $\mathrm{y}=x^{2}$ and $\mathrm{y}=3 x-1$

$$
\begin{aligned}
& y=x^{2} \text { and } y=3 x-1 \\
& x^{2}-3 x+1=0
\end{aligned}
$$

$$
x=\frac{-(-3) \pm \sqrt{32-4 \times 1 \times 1}}{2 \times 1}=\frac{3 \pm \sqrt{5}}{2}
$$

$$
x=\frac{3+\sqrt{5}}{2}=2.618 \ldots \text { so } x=2.62 \text { to } 2 \text { d.p. }
$$

$$
y=\left(\frac{3+\sqrt{5}}{2}\right)^{2}=6.854 \ldots \text { so } y=6.85 \text { to } 2 \text { d.p. }
$$

What is the other solution?

$$
x=0.38 \text { and } y=0.15
$$

Solve where $\boldsymbol{y}=$ and $\boldsymbol{y}=$

4. Matt is solving the simultaneous equations.

$$
\begin{aligned}
& y=x^{2}+4 \\
& y=6 x-4
\end{aligned}
$$

He equates the two expressions for y and starts to rearrange.

$$
\begin{gathered}
x^{2}+4=6 x-4 \\
x^{2}-6 x=0
\end{gathered}
$$

Where has Matt gone wrong?

$$
x^{2}-6 x+8=0
$$

Correct Matt's work and go on to solve the simultaneous equations.

$$
x=4, \mathrm{y}=20 \text { and } x=2, \mathrm{y}=8
$$

