Triple - Chemistry - Key Stage 4
Quantitative Chemistry

Volumes of gases

Mrs. Begum

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Task 1

Calculate the volume of gas in:

1. 4 g of H_{2}
2. 8 g of CH_{4}
3. $3.55 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$
4. 0.002 g of He
5. $8.8 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$
6. 2 g of Ar
7. 1 g of N_{2}
8. 16 g of O_{2}

Task 2

1. What volume of carbon dioxide is produced when 125 g of calcium carbonate is thermally decomposed?
$\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

Balance symbol equation

Calculate Mr_{r} of CaCO_{3}
Moles of CaCO_{3}
Work out the ratio
Calculate the volume of carbon dioxide

Task 3

1. What volume of oxygen is produced when 0.34 g hydrogen peroxide is left to decompose?
$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
2. What volume of nitrogen is needed to produce 6.8 g of ammonia?
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
3. What volume of chlorine is needed to produce 4.68 g sodium chloride?
$2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}$
4. What volume of oxygen is required to produce 2 g sodium oxide? Answer in cm^{3}. $4 \mathrm{Na}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O}$

Task 1 answers

1. 4 g of H_{2}. moles $=4 / \mathbf{2}=\mathbf{2}$. Volume $=\mathbf{2 \times 2 4 = 4 8 \mathrm { dm } ^ { 3 }}$
2. 8 g of CH_{4}. moles $=8 / 16=0.5$. Volume $=0.5 \times 24=12 \mathrm{dm}^{3}$
3. 3.55 g of Cl_{2}. moles $\boldsymbol{= 3 . 5 5 / 7 1} \boldsymbol{=} \mathbf{0 . 0 5}$. Volume $=0.05 \times 24=1.2 \mathrm{dm}^{3}$
4. 0.002 g of He . moles $=\mathbf{0 . 0 0 2 / 8} \mathbf{= 0 . 0 0 0 2 5}$. Volume $=0.00025 \times 24=0.006 \mathrm{dm}^{3}$

5. 2 g of Ar. moles $=2 / 40=0.05$ Volume $=0.05 \times 24=1.2 \mathrm{dm}^{3}$
6. 1 g of N_{2}. moles $=\mathbf{1 / 2 8}=\mathbf{0 . 0 3 6}$. Volume $=0.036 \times 24=0.86 \mathrm{dm}^{3}$
7. 16 g of O_{2}. moles $=16 / 32=0.5$ Volume $=0.5 \times 24=12 \mathrm{dm}^{3}$

Task 2 answers

1. What volume of carbon dioxide is produced when 125 g of calcium carbonate is thermally decomposed?
$\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

Balance symbol equation	$\mathbf{C a C O}_{\mathbf{3}} \longrightarrow \mathbf{C a O}+\mathbf{C O}_{\mathbf{2}}$
Calculate M_{r} of CaCO_{3}	$\mathbf{C a C O}_{\mathbf{3}}=\mathbf{1 0 0}$
Moles of CaCO_{3}	$\mathbf{1 2 5 / \mathbf { 1 0 0 } = \mathbf { 1 . 2 5 }}$
Work out the ratio	Ratio 1:1 \quad Moles of $\mathbf{C O}_{\mathbf{2}}=\mathbf{1 . 2 5}$
Calculate the volume of carbon dioxide	Volume $=\mathbf{1 . 2 5} \times \mathbf{2 4}=\mathbf{3 0} \mathbf{~ d m}^{\mathbf{3}}$

Task 3 answers

1. What volume of oxygen is produced when 0.34 g hydrogen peroxide is left to decompose?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \quad \text { Volume }=\mathbf{0 . 1 2} \mathrm{dm}^{3}
$$

2. What volume of nitrogen is needed to produce 6.8 g of ammonia?
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3} \quad$ Volume $=4.8 \mathbf{d m}^{3}$
3. What volume of chlorine is needed to produce 4.68 g sodium chloride?
$2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl} \quad$ Volume $\mathbf{= 0 . 9 6} \mathbf{d m}^{\mathbf{3}}$
4. What volume of oxygen is required to produce 2 g sodium oxide? Answer in cm^{3}. $4 \mathrm{Na}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O} \quad$ Volume $=\mathbf{3 8 7} \mathbf{c m}^{3}$
