
Lesson 6: Comparing Searching
Algorithms

Computing

Kashif Ahmed

Materials from the Teach Computing Curriculum created by the National Centre for Computing Education

Task 1 - Linear and Binary Searches

Searching for a planet

Izaz has created a program that stores the planets in our solar system. A sample
of data is shown in Figure 1.

Element Earth Jupiter Mars Mercury Neptune Saturn Uranus Venus

Index 0 1 2 3 4 5 6 7

Figure 1

Task 1 - Linear and Binary Searches

State the total number of elements shown in Figure 1.

List the planets that will be compared to the planet ‘Neptune’ when Izaz
performs a linear search on the data shown in Figure 1.

List the planets that will be compared to the planet ‘Neptune’ when Izaz
performs a binary search on the data shown in Figure 1.

Task 1 - Linear and Binary Searches

State the planet and number of comparisons that would incur the worst-case
scenario (highest number of comparisons) for linear search on the data shown
in Figure 1.

State the planet and number of comparisons that would incur the worst-case
scenario (highest number of comparisons) for binary search on the data shown
in Figure 1.

Task 1 - Linear and Binary Searches

Explain which search algorithm is most appropriate for finding a planet in
Figure 1.

Task 2 - Code for Linear Search

An inefficient linear search algorithm

An implementation of a linear search in Python is shown in Figure 1. Read
through the code to familiarise yourself with it; don’t worry if you don’t
understand all of it yet.

Task 2 - Code for Linear Search

1

2

3

4

5

6

7

8

def linear_search(items, search_item):

 # Initialise the variables

index = -1

current = 0

 # Repeat while the end of the list has not been reached

while current < len(items):

 # Compare the current item to the item you are searching for

 if items[current] == search_item:

 index = current

 # Proceed to the next item in the list

 current = current + 1

 return index

Figure 1

Task 2 - Code for Linear Search

State the line number where iteration is first used in Figure 1.

Identify one list that is used in Figure 1.

Describe what happens when line 11 is omitted from the algorithm in Figure 1.

Task 2 - Code for Linear Search

Explain why index needs to be initialised in Figure 1.

Explain why the algorithm in Figure 1 is a function and not a procedure.

Task 2 - Code for Linear Search

Complete the trace table below using the algorithm in Figure 1 when items is
the list are

[‘Reg', 'Chloe', 'Steph', 'Ahmed', 'Keira', 'Neelu'] and the search_item is 'Keira'.

The first two passes have been completed for you.

Task 2 - Code for Linear Search
Line index current items[current] Condition

2 -1

3 0

4 True

5 Reg False

7 1

4 True

5 Chloe False

7 2

Task 2 - Code for Linear Search
Line index current items[current] Condition

Task 2 - Code for Linear Search
Line index current items[current] Condition

Task 2 - Code for Linear Search

A more efficient linear search algorithm

Figure 2 is a more efficient version of a linear search than the one shown in
Figure 1.

1

2

3

4

5

6

7

8

9

10

def linear_search(items, search_item):

 # Initialise the variables

index = -1

current = 0

found = False

 # Repeat while the end of the list has not been reached

and the search item has not been found

while current < len(items) and found == False:

 # Compare the current item to the item you are searching for

 if items[current] == search_item:

 index = current

 found = True

 # Proceed to the next item in the list

 current = current + 1

 return index

Figure 1

Task 2 - Code for Linear Search

State the data type of the variable found in Figure 2.

The identifier found is a better choice for this variable than f. Give one reason
why.

State one advantage of the algorithm in Figure 2 compared to that in Figure 1.

Task 2 - Code for Linear Search

Describe what it means if the function in Figure 2 returns a value of -1.

State three advantages of implementing the algorithm in Figure 2 as a
subroutine.

Task 3 - Code for Binary Search

A binary search algorithm

An implementation of a binary search in Python is shown in Figure 1. Read
through the code to familiarise yourself with it; don’t worry if you don’t
understand all of it yet.

Figure 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

def binary_search(items, search_item):

 index = -1 # Initialise the variables

first = 0

last = len(items) - 1

found = False

while first <= last and found == False:# Repeat while there are still items item has not been found

 midpoint = (first + last) // 2 # Find the middle item (midpoint) between first and last

 if items[midpoint] == search_item: # Compare the item at the midpoint to the search item

 index = midpoint

 found = True

 elif items[midpoint] < search_item:

 first = midpoint + 1 # Focus on right half of range

 else:

 last = midpoint - 1 # Focus on the left half of range

 return index

Task 3 - Code for Binary Search

State the data type of the variable found in Figure 1.

Which of the following statements is true?

a) The algorithm in Figure 1 uses nested iteration.

b) The algorithm in Figure 1 uses indefinite iteration.

c) The algorithm in Figure 1 will loop infinitely.

d) The algorithm in Figure 1 uses nested selection.

Task 3 - Code for Binary Search

Explain why the calculation of midpoint in line 9 uses floor division.

Task 3 - Code for Binary Search

Complete the trace table below using the algorithm in Figure 1 when items in
the list are

[‘Ahmed', 'Chloe', 'Keira', 'Olivia', 'Neelu', 'Reg', 'Steph', 'Zak'] and the search_item
is 'Olivia’.

The first pass has been completed for you.

Task 3 - Code for Binary Search
Line index first last found midpoint items[midpoint] Condition

2 -1

3 0

4 7

5 False

6 True

7 3

8 Olivia False

11 Olivia True

Task 3 - Code for Binary Search
Line index first last found midpoint items[midpoint] Condition

12 4

Task 3 - Code for Binary Search
Line index first last found midpoint items[midpoint] Condition

