Combined Science - Chemistry - Key Stage 4

Quantitative Chemistry

Concentration

Mrs. Begum

Periodic Table of Elements

* The lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

					4 He helium 2
11	12	14	16	19	20
В	C	N	0	F	Ne
boron	carbon	nitrogen	oxygen	fluorine	neon
5	6	7	8	9	10
27	28	31	32	35.5	40
AI	Si	P	S	C	Ar
aluminium	silicon	phosphorus	sulfur	chlorine	argon
13	14	15	16	17	18
70	73	75	79	80	84
Ga	Ge	As	Se	Br	Kr
gallium	germanium	arsenic	selenium	bromine	krypton
31	32	33	34	35	36
115	119	122	128	127	131
In	Sn	Sb	Те		Xe
indium	tin	antimony	tellurium	iodine	xenon
49	50	51	52	53	54
204	207	209	[209]	[210]	[222]
	Pb	Bi	Po	At	Rn
thallium	lead	bismuth	polonium	astatine	radon
01	02	03	04	05	00
[286]	[289]	[289]	[293]	[293]	[294]
Nh	FI	Mc	LV	IS	Og
nihonium	flerovium	moscovium	livermorium	tennessine	organesson
113	114	115	116	117	118

Warm up

- 1. Calculate the RFM of $CaCl_2$.
- 2. Balance this equation:

 $CaO + HCI \longrightarrow CaCl_2 + H_2O$

- 3. Convert 30 mg into g.
- 4. 12.2 g Mg was burned in 8.1 g oxygen. Calculate the mass of magnesium oxide formed.
- 5. Write the formula for magnesium oxide.

Convert the volumes below to dm³: Convert tl

1. 10 cm^3 6. 1 dm^3 2. 100 cm^3 7. 10 dm^3 3. 200 cm^3 8. 70 dm^3 4. 0.03 cm^3 9. 0.8 dm^3 5. 730 cm^3 10. 2.3 dm^3

Convert the volumes below to cm³:

Calculate the concentration of:

- 1. 40 g solute in 800 cm³
- 2. 0.08 g solute in 20 cm^3
- 3. 90 g solute in 780 cm³
- 4. 2.5 g of solute dissolved in a 500 cm³ solution
- 5. 2.3 g of solute in a 250 cm³ solution
- 6. 10 mg of solute in a 25 cm³ solution
- 7. 15 mg of solute in a 750 cm^3 solution

Calculate the mass of the solute dissolved in the given volumes :

- 1. 200 cm³ of a 3.0 g/dm³ solution (remember to convert to dm^3)
- 2. $0.5 \text{ dm}^3 \text{ of a } 250 \text{ g/dm}^3 \text{ solution}$
- 3. $10 \text{ cm}^3 \text{ of a } 40 \text{ g/dm}^3 \text{ solution}$
- 4. $40 \text{ cm}^3 \text{ of a } 60 \text{ g/dm}^3 \text{ solution}$
- 5. $0.05 \text{ dm}^3 \text{ of a } 300 \text{ g/dm}^3 \text{ solution}$
- 6. $25 \text{ cm}^3 \text{ of a } 2.3 \text{ g/dm}^3 \text{ solution}$

en volumes : ivert to dm³)

Using 75 g of solute, calculate how much water is needed to:

- 1. Make a 34 g/dm³ solution
- 2. Make a 0.1 g/dm^3 solution
- 3. Make a 83 g/dm³ solution
- 4. Make a 10 g/dm³ solution
- 5. Make a 1660 g/dm³ solution. Give your answer in cm^3

Independent practice - Triple only

Describe how you would make up:

- A 0.2 M solution of HCl
- 500 cm³ of 0.1 M solution of CaCl₂

Independent practice - Triple only

- 1. What mass of HCl is dissolved in 100 cm³ of a 3 M solution?
- 2. What mass of NaOH is in 24 cm³ of a 2 M solution?

Warm up answers

- 1. Calculate the RFM of CaCl₂. 111
- 2. Balance this equation:

 $CaO + 2HCI \longrightarrow CaCl_2 + H_2O$

- 3. Convert 30 mg into g. **30/1000 = 0.03 g**
- 4. 12.2 g Mg was burned in 8.1 g oxygen. Calculate the mass of magnesium oxide formed. 12.2 + 8.1 = 20.3 g
- 5. Write the formula for magnesium oxide. MgO

Independent practice 1 answers

Convert the volumes below to dm^3 : Convert the volumes below to cm^3 :

٦.	10 cm ³	0.01 dm ³	6.	1 dm ³
2.	100 cm ³	0.1 dm³	7.	10 dm ³
3.	200 cm ³	0.2 dm ³	8.	70 dm ³
4.	0.03 cm ³	0.00003 dm ³	9.	0.8 dm
5.	730 cm ³	0.73 dm³	10.	2.3 dm

1000 cm^3 10000 cm^3 3 70000 cm³ 3 800 cm³

3 2300 cm³

Independent practice 2 answers

Calculate the concentration of:

- 1. 40 g solute in 800 cm³ **50 g/dm³**
- 2. 0.08 g solute in 20 cm³ 4 g/dm³
- 3. 90 g solute in 780 cm³ 115 g/dm³
- 4. 2.5 g of solute dissolved in a 500 cm^3 solution
- 5. 2.3 g of solute in a 250 cm³ solution 9.2 g/dm³
- 6. 10 mg of solute in a 25 cm³ solution 0.4 g/dm³
- 7. 15 mg of solute in a 750 cm³ solution 0.02 g/dm^3

Independent practice 3 answers

Calculate the mass of the solute dissolved in the given volumes :

٦.	200 cm ³ of a 3.0 g/dm ³ solution	0.6 g
2.	0.5 dm ³ of a 250 g/dm ³ solution	125 g
3.	10 cm ³ of a 40 g/dm ³ solution	0.4 g
4.	40 cm^3 of a 60 g/dm ³ solution	2.4 g
5.	0.05 dm ³ of a 300 g/dm ³ solution	15 g
6.	25 cm^3 of a 2.3 g/dm ³ solution	0.0575 g

Independent practice 4 answers

Using 75 g of solute, how much water is needed to:

- 1. Make a 34 g/dm³ solution
- 2. Make a 0.1 g/dm^3 solution
- 3. Make a 83 g/dm³ solution
- 4. Make a 10 g/dm³ solution
- 5. Make a 1660 g/dm³ solution. Give your answer in cm³

2.2 dm³ 750 dm³ 0.9 dm³ 7.5 dm³ 45.2 cm³

Independent task - Triple answers

Describe how you would make up:

A 0.2 M solution of HCl

of water.

• 500 cm³ of 0.1 M solution of CaCl₂

Weigh out 55.5 g of CaCl₂ and dissolve it in 500 cm³ of water.

Weigh out 7.3 g of HCl and dissolve it in 1000 cm³

Independent practice answers

- 1. What mass of HCl is dissolved in 100 cm³ of a 3 M solution? A 3 M solution contains $3 \times 36.5 = 109.5 \text{ g}$. That equals 109.5g in 1000 cm³. From the question, we are looking for the mass in 100 cm^3 , Divide answer by 10 to get 10.95 g (in 100 cm^3)
- 2. What mass of NaOH is in 24 cm³ of a 2 M solution? A 2 M solution of NaOH = $2 \times 40 = 80 \text{ g}$ 80 g in 1000 cm³ \div 1000 = 0.08 g in 1 cm³ $x24 = 1.92 g (in 24 cm^3)$

