Combined Science - Chemistry - Key Stage 4
Quantitative Chemistry

Concentration

Mrs. Begum

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Warm up

1. Calculate the RFM of CaCl_{2}.
2. Balance this equation:
$\mathrm{CaO}+\mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. Convert 30 mg into g .
4. 12.2 g Mg was burned in 8.1 g oxygen. Calculate the mass of magnesium oxide formed.
5. Write the formula for magnesium oxide.

Independent practice 1

Convert the volumes below to dm^{3} :

1. $10 \mathrm{~cm}^{3}$
2. $100 \mathrm{~cm}^{3}$
3. $200 \mathrm{~cm}^{3}$
4. $0.03 \mathrm{~cm}^{3}$
5. $730 \mathrm{~cm}^{3}$

Convert the volumes below to cm^{3} :
6. $1 \mathrm{dm}^{3}$
7. $10 \mathrm{dm}^{3}$
8. $70 \mathrm{dm}^{3}$
9. $0.8 \mathrm{dm}^{3}$
10. $2.3 \mathrm{dm}^{3}$

Independent practice 2

Calculate the concentration of:

1. 40 g solute in $800 \mathrm{~cm}^{3}$
2. 0.08 g solute in $20 \mathrm{~cm}^{3}$
3. 90 g solute in $780 \mathrm{~cm}^{3}$
4. 2.5 g of solute dissolved in a $500 \mathrm{~cm}^{3}$ solution
5. 2.3 g of solute in a $250 \mathrm{~cm}^{3}$ solution
6. 10 mg of solute in a $25 \mathrm{~cm}^{3}$ solution
7. 15 mg of solute in a $750 \mathrm{~cm}^{3}$ solution

Independent practice 3

Calculate the mass of the solute dissolved in the given volumes:

1. $200 \mathrm{~cm}^{3}$ of a $3.0 \mathrm{~g} / \mathrm{dm}^{3}$ solution (remember to convert to dm^{3})
2. $0.5 \mathrm{dm}^{3}$ of a $250 \mathrm{~g} / \mathrm{dm}^{3}$ solution
3. $10 \mathrm{~cm}^{3}$ of a $40 \mathrm{~g} / \mathrm{dm}^{3}$ solution
4. $40 \mathrm{~cm}^{3}$ of a $60 \mathrm{~g} / \mathrm{dm}^{3}$ solution
5. $0.05 \mathrm{dm}^{3}$ of a $300 \mathrm{~g} / \mathrm{dm}^{3}$ solution
6. $25 \mathrm{~cm}^{3}$ of a $2.3 \mathrm{~g} / \mathrm{dm}^{3}$ solution

Independent practice 4

Using 75 g of solute, calculate how much water is needed to:

1. Make a $34 \mathrm{~g} / \mathrm{dm}^{3}$ solution
2. Make a $0.1 \mathrm{~g} / \mathrm{dm}^{3}$ solution
3. Make a $83 \mathrm{~g} / \mathrm{dm}^{3}$ solution
4. Make a $10 \mathrm{~g} / \mathrm{dm}^{3}$ solution
5. Make a $1660 \mathrm{~g} / \mathrm{dm}^{3}$ solution. Give your answer in cm^{3}

Independent practice - Triple only

Describe how you would make up:

- A 0.2 M solution of HCl
- $500 \mathrm{~cm}^{3}$ of 0.1 M solution of CaCl_{2}

Independent practice - Triple only

1. What mass of HCl is dissolved in $100 \mathrm{~cm}^{3}$ of a 3 M solution?
2. What mass of NaOH is in $24 \mathrm{~cm}^{3}$ of a 2 M solution?

Warm up answers

1. Calculate the RFM of CaCl_{2}. 111
2. Balance this equation:
$\mathrm{CaO}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. Convert 30 mg into $\mathrm{g} \cdot \mathbf{3 0 / 1 0 0 0}=\mathbf{0 . 0 3} \mathrm{g}$
4. 12.2 g Mg was burned in 8.1 g oxygen. Calculate the mass of magnesium oxide formed. $12.2+8.1=20.3 \mathrm{~g}$
5. Write the formula for magnesium oxide. MgO

Independent practice 1 answers

Convert the volumes below to dm^{3} :

1. $10 \mathrm{~cm}^{3}$
$0.01 \mathrm{dm}^{3}$
2. $100 \mathrm{~cm}^{3}$
$0.1 \mathrm{dm}^{3}$
3. $200 \mathrm{~cm}^{3}$
$0.2 \mathrm{dm}^{3}$
4. $0.03 \mathrm{~cm}^{3}$
$0.00003 \mathrm{dm}^{3}$
5. $730 \mathrm{~cm}^{3}$
$0.73 \mathrm{dm}^{3}$

Convert the volumes below to cm^{3} :
6. $1 \mathrm{dm}^{3} \quad 1000 \mathrm{~cm}^{3}$
7. $10 \mathrm{dm}^{3} \quad 10000 \mathrm{~cm}^{3}$
8. $70 \mathrm{dm}^{3} 70000 \mathrm{~cm}^{3}$
9. $0.8 \mathrm{dm}^{3} \quad \mathbf{8 0 0} \mathrm{~cm}^{3}$
10. $2.3 \mathrm{dm}^{3} \quad 2300$ cm3

Independent practice 2 answers

Calculate the concentration of:

1. 40 g solute in $800 \mathrm{~cm}^{3} \quad 50 \mathrm{~g} / \mathrm{dm}^{3}$
2. 0.08 g solute in $20 \mathrm{~cm}^{3} 4 \mathrm{~g} / \mathrm{dm}^{3}$
3. 90 g solute in $780 \mathrm{~cm}^{3} \quad 115 \mathrm{~g} / \mathrm{dm}^{3}$
4. 2.5 g of solute dissolved in a $500 \mathrm{~cm}^{3}$ solution $5 \mathrm{~g} / \mathrm{dm}^{3}$
5. 2.3 g of solute in a $250 \mathrm{~cm}^{3}$ solution $\quad 9.2 \mathrm{~g} / \mathrm{dm}^{3}$
6. 10 mg of solute in a $25 \mathrm{~cm}^{3}$ solution $\quad 0.4 \mathrm{~g} / \mathrm{dm}^{3}$
7. 15 mg of solute in a $750 \mathrm{~cm}^{3}$ solution $0.02 \mathrm{~g} / \mathrm{dm}^{3}$

Independent practice 3 answers

Calculate the mass of the solute dissolved in the given volumes:

1. $200 \mathrm{~cm}^{3}$ of a $3.0 \mathrm{~g} / \mathrm{dm}^{3}$ solution $\quad 0.6 \mathrm{~g}$
2. $0.5 \mathrm{dm}^{3}$ of a $250 \mathrm{~g} / \mathrm{dm}^{3}$ solution 125 g
3. $10 \mathrm{~cm}^{3}$ of a $40 \mathrm{~g} / \mathrm{dm}^{3}$ solution $\quad 0.4 \mathrm{~g}$
4. $40 \mathrm{~cm}^{3}$ of a $60 \mathrm{~g} / \mathrm{dm}^{3}$ solution $\quad 2.4 \mathrm{~g}$
5. $0.05 \mathrm{dm}^{3}$ of a $300 \mathrm{~g} / \mathrm{dm}^{3}$ solution 15 g
6. $25 \mathrm{~cm}^{3}$ of a $2.3 \mathrm{~g} / \mathrm{dm}^{3}$ solution $\quad 0.0575 \mathrm{~g}$

Independent practice 4 answers

Using 75 g of solute, how much water is needed to:

1. Make a $34 \mathrm{~g} / \mathrm{dm}^{3}$ solution
2. Make a $0.1 \mathrm{~g} / \mathrm{dm}^{3}$ solution
3. Make a $83 \mathrm{~g} / \mathrm{dm}^{3}$ solution
4. Make a $10 \mathrm{~g} / \mathrm{dm}^{3}$ solution
5. Make a $1660 \mathrm{~g} / \mathrm{dm}^{3}$ solution. Give your answer in cm^{3}
$2.2 \mathrm{dm}^{3}$
$750 \mathrm{dm}^{3}$
$0.9 \mathrm{dm}^{3}$
$7.5 \mathrm{dm}^{3}$
45.2 cm 3

Independent task - Triple answers

Describe how you would make up:

- A 0.2 M solution of HCl

Weigh out 7.3 g of HCl and dissolve it in $1000 \mathrm{~cm}^{3}$ of water.

- $500 \mathrm{~cm}^{3}$ of 0.1 M solution of CaCl_{2}

> Weigh out 55.5 g of CaCl_{2} and dissolve it in 500 $\mathrm{~cm}^{3}$ of water.

Independent practice answers

1. What mass of HCl is dissolved in $100 \mathrm{~cm}^{3}$ of a 3 M solution?

A 3 M solution contains $3 \times 36.5=109.5 \mathrm{~g}$. That equals 109.5 g in $1000 \mathrm{~cm}^{3}$.
From the question, we are looking for the mass in $100 \mathrm{~cm}^{3}$, Divide answer by 10 to get 10.95 g (in $100 \mathrm{~cm}^{3}$)
2. What mass of NaOH is in $24 \mathrm{~cm}^{3}$ of a 2 M solution?

A $2 \mathbf{M}$ solution of $\mathrm{NaOH}=\mathbf{2 \times 4 0}=\mathbf{8 0} \mathbf{g}$ 80 g in $1000 \mathrm{~cm}^{3}$ $\div 1000=0.08 \mathrm{~g}$ in $1 \mathrm{~cm}^{3}$

$$
\text { x24 = } 1.92 \mathrm{~g}\left(\text { in } 24 \mathrm{~cm}^{3}\right)
$$

