Lesson 6 - Hydraulics

$$
\text { Physics - Key Stage } 3
$$

Matter

Mr McKee

What is the size of the force from the second cylinder?

Step 1 - how many times bigger or smaller is the area?
Area 2 to area 1 is,
$50 \div 10=5$ times bigger.
Step $\mathbf{2 - m u l t i p l y}$ the force by that number
That means the force will increase by 5
times too. So multiply the force $\times 5$
$3 \mathrm{~N} \times 5=15$ Newtons.

What is the size of the force from the second cylinder?

Step 1 - how many times bigger or smaller is the area?
Area 2 to area 1 is..
$60 \div 6-10$ times bigger.
Step 2 - multiply the force by that number
That means the force will increase by 10 times
too. So multiply the force $\times 10$
$3 \mathrm{~N} \times 10=30$ Newtons.

Here's four for you to do

Calculation Question.

Question 1

a. Calculate the pressure produced when a force of 200 N is applied to an area of $20 \mathrm{~cm}^{2}$.
b. Calculate the force this acts with on a second cylinder with an area of $90 \mathrm{~cm}^{2}$.

Question 2

a. Calculate the pressure produced when a force of 350 N is applied to an area of $15 \mathrm{~cm}^{2}$.
b. Calculate the force this acts with on a second cylinder with an area of $70 \mathrm{~cm}^{2}$.

Three for you to do

Question 3

a. Calculate the pressure produced when a force of 1000 N is applied to an area of 50 cm^{2}.
b. Calculate the force this acts with on a second cylinder with an area of $200 \mathrm{~cm}^{2}$.

Question 4

a. Calculate the pressure produced when a force of 0.5 N is applied to an area of 2 cm^{2}.
b. Calculate the force this acts with on a second cylinder with an area of $50 \mathrm{~cm}^{2}$.

Question 5

a. Calculate the pressure produced when a force of 0.5 kN is applied to an area of $0.5 \mathrm{~m}^{2}$.
b. Calculate the force this acts with on a second cylinder with an area of $2.4 \mathrm{~m}^{2}$.

Independent practice: change the incorrect words to make the statement correct

1. A volume is applied to the first cylinder, which moves up
2. The cylinder exerts a pressure on the gas,
3. The liquid, which can compress, pushes through to the second cylinder.
4. The pressure is different throughout the system as it moves through.
5. This exerts different pressure on the second cylinder.
6. If the second cylinder has a larger pressure, it will magnify the volume.
