Mathematics

Solving Inequalities

Downloadable Resource

Mr Millar

Try this

What different integer values could x have?

I can see that the inequality is true if $x=$...

Independent task

Solve the following inequalities

$$
4 x+7 \leq 27 \quad 1>\frac{1}{2}+\frac{x}{10} \quad \mathrm{x}+8<3 x-10
$$

Explore

If $a=5$, how many different ways can you use the expression cards to complete the inequality frame? What if $a=10$? What if $a=100$?

Answers

Try this

What different integer values could x have?

$$
13 \geq 4+3 x
$$

I can see that the inequality is true if $x=$..

You could try out different integers eg, 2 works, 3 works, but not 4 or 5 .
We could also solve the inequality
$13 \geq 4+3 x$
Doesn't work for all
$9 \geq 3 x$
Works for all values 3 or less values more than 3

$3 \geq x$

Try this

Solve the following inequalities

$$
\begin{array}{ccc}
4 x+7 \leq 27 & 1>\frac{1}{2}+\frac{x}{10} & \mathrm{x}+8<3 x-10 \\
4 x \leq 20 & \frac{1}{2}>\frac{x}{10} & 8<2 x-10 \\
x \leq 5 & 18<2 x \\
& & 9<x
\end{array}
$$

Try this

If $a=5$, how many different ways can you use the expression cards to complete the inequality frame? What if $a=10$? What if $a=100$?

2 different ways to complete if $a=5(10+a$ and $a+5$, or $10+a$ and $2 a-5$ on the left $)$ 3 different ways to complete if $\mathrm{a}=10$ or $100(10+\mathrm{a}$ and $\mathrm{a}+5$, or $10+\mathrm{a}$ and $2 \mathrm{a}-5$, or $\mathrm{a}+$ 5 and $2 a-5$ on the left)

