Lesson 1 - Levers and Pivots

Physics - Key Stage 3 Forces at Work

Mrs Wolstenholme

What is a Lever?

A lever is a simple machine

A lever is a rigid object that will rotate around a fixed point <u>(pivot)</u>

What is a lever?

Option 1

Option 2

A simple machine. A flexible object that can rotate.

that can rotate.

Option 3

A complex machine. A flexible object that can rotate.

that can rotate.

A simple machine. A rigid object

Option 4

A complex machine. A rigid object

What does a lever rotate about?

Option 1

A point called the Sun.

Option 2

Option 3

A point called a pivot.

Option 4

A place called a lever.

A line called a pivot.

Which point of my door handle is the pivot?

Which point of my wheelbarrow is the pivot?

Moment: turning effect of a force

Two options to make a moment bigger

Make my force large

Credit: no attribution required

Make the perpendicular distance from my force to the pivot bigger

The turning effect of a force.

Option 1

Option 2

Option 3

The turning effect of a pivot.

What is a moment?

Option 4

The turning effect of a lever.

The spinning effect of a force.

How could I increase the moment of a force? (Choose 2 options)

Option 1

Increase the force.

Option 2

Option 3

Increase the perpendicular distance from the force and the pivot.

Move closer to the pivot.

Decrease the force.

Calculating moments

Moment Force x Perpendicular distance \equiv (Nm) (N) (m)(Ncm) (cm)

Calculate the moment (turning force) of a spanner that is 20 cm long when a force of 13 N is applied

Moment = Force x Perpendicular Distance

Moment = 13×20

Moment = 260 Ncm

Calculating moments: Together

Moment Force x Perpendicular distance =(Nm) (N) (m)(Ncm) (cm)

Calculate the turning force of a wheelbarrow with an arm that is 2m long when a force of 30N is applied.

Moment = Force x Perpendicular Distance

Moment =

Force

Perpendicular distance

Calculating moments: Independently

Moment = Force x Perpendicular Distance

- 1. What is the moment of a 20N force which is exerted 30cm from the pivot?
- 2. What is the moment when someone with weight 600N sits 0.5m from a pivot?

What are the units for moment?

Option 1

Cm and m

Option 2

Nm and m

Option 3

N and Ncm

Option 4

Nm and Ncm

What are the units for perpendicular distance?

Option 1

Cm and m

Option 2

Nm and m

Option 3

N and Ncm

Option 4

Nm and Ncm

What is the unit for force?

