Lesson 1 - Levers and Pivots

Physics - Key Stage 3
Forces at Work

Mrs Wolstenholme

What is a Lever?

A lever is a simple machine
A lever is a rigid object that will rotate around a fixed point (pivot)

What is a lever?

Option 1

A simple machine. A flexible object that can rotate.

Option 3

A complex machine. A flexible object that can rotate.

Option 2

A simple machine. A rigid object that can rotate.

Option 4

A complex machine. A rigid object that can rotate.

What does a lever rotate about?

Option 1

A point called the Sun.

Option 3

A point called a pivot.

Option 2

A place called a lever.

Option 4

A line called a pivot.

Which point of my door handle is the pivot?

Which point of my wheelbarrow is the

 pivot?

Moment: turning effect of a force

Two options to make a moment bigger

Make my force large

Make the perpendicular distance from my force to the pivot bigger

What is a moment?

Option 1

The turning effect of a force.

Option 3

The turning effect of a pivot.

Option 2

The turning effect of a lever.

Option 4

The spinning effect of a force.

How could I increase the moment of a force?
 (Choose 2 options)

Option 1

Increase the force.

Option 3

Increase the perpendicular distance from the force and the pivot.

Option 2

Move closer to the pivot.

Option 4

Decrease the force.

Calculating moments

Moment $=$	Force x	Perpendicular distance
(Nm)	(N)	(m)
(Ncm)		(cm)

Calculate the moment (turning force) of a spanner that is 20 cm long when a force of 13 N is applied

Moment = Force \times Perpendicular Distance

Moment = 13×20

Moment $=260 \mathrm{Ncm}$

Calculating moments: Together

Moment	$=$ Force x
(Nm)	(N)
(Ncm)	

Calculate the turning force of a wheelbarrow with an arm that is 2 m long when a force of 30 N is applied.

Moment = Force \times Perpendicular Distance
Moment =

Perpendicular distance

Calculating moments: Independently

Moment = Force \times Perpendicular Distance

1. What is the moment of a 20 N force which is exerted 30 cm from the pivot?
2. What is the moment when someone with weight 600 N sits 0.5 m from a pivot?

What are the units for moment?

Option 1

Cm and m

Option 3
N and Ncm

Option 2

Nm and m

$$
\text { Option } 4
$$

Nm and Ncm

What are the units for perpendicular distance?

Option 1
Cm and m

Option 3
N and Ncm

Option 2

Nm and m

$$
\text { Option } 4
$$

Nm and Ncm

What is the unit for force?

Option 1
m
Option 3

Ncm

Option 2

Nm

Option 4

N

