Solving adfected quadratic equations II

Mr Coward

Try this

Using substitution, find values of x that satisfy the equation.

$$
x^{2}+7 x-18=0
$$

$$
(x-3)(x+5)=20
$$

Independent task

1) Solve the following equations
a) $x^{2}+5 x+4=0$
b) $x^{2}+10 x+9=0$
c) $0=x^{2}+9 x+18$
d) $x^{2}-9 x+20=0$
e) $x^{2}-10 x-24=0$
f) $x^{2}-10 x+24=0$
g) $x^{2}-12 x=0$
h) $x^{2}-49=0$
i) $x^{2}-2 x-35=0$

Independent task

2) Some of the following are pure quadratic equations, and some are adfected quadratic equations. Solve them all.
a) $3 a^{2}+5=17$
b) $b^{2}-4 b+4=0$
c) $c^{2}-4=0$
d) $d^{2}=4$
3) Did you use the same method for c and d on question 2 ? Or did you use different methods? How are the questions the same? How are they different? Which method works best?
4) How do you tell the difference between a pure and adfected equation?

Explore

Solve both quadratic equations

$$
\begin{gathered}
x^{2}+6 x+9=0 \\
x^{2}-10 x+25=0
\end{gathered}
$$

What do you notice? Can you find another set of equations like this?

Explore

Solve both quadratic equations

$$
\begin{aligned}
& x^{2}-5 x+6=0 \\
& x^{2}-5 x-6=0
\end{aligned}
$$

Notice how the are both solvable by factorisation, no matter the sign of the constant (positive or negative).

