Maths

1. a) $\mathbf{a} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Draw 2 \mathbf{a} and 3 \mathbf{a} on this grid.

b) Write the column vectors for 2a and 3a.

2. a) $\mathbf{b} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$. Draw 2**b** and -**b** on this grid.

b) Write the column vectors for 2b and -b.

3. **u** =
$$\binom{3}{2}$$
 and **v** = $\binom{-3}{4}$

Write as column vectors.

a)
$$3u$$
 b) $2v$ c) $-u$ d) $-3v$

4.
$$\mathbf{s} = \binom{0}{2}$$
 and $\mathbf{t} = \binom{4}{-2}$

Write as column vectors.

a)
$$3s$$
 b) $2t$ c) $-4s$

5. Given that.

$$3\mathbf{a} = \binom{12}{9}$$
, $4\mathbf{b} = \binom{-4}{-8}$ and $2\mathbf{c} = \binom{-10}{2}$

Give these as column vectors

- a) a b) b c)5c d) -c

6. Given that,
$$\mathbf{e} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$$
 and $\mathbf{f} = \begin{pmatrix} -10 \\ 2 \end{pmatrix}$

Write as column vectors.

- a) A vector twice as long as f and in the same direction
- b) A vector the same length as e but in the opposite direction.

Answers

1. a) $\mathbf{a} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Draw 2 \mathbf{a} and 3 \mathbf{a} on this grid.

b) Write the column vectors for 2a and 3a.

$$2\mathbf{a} = \binom{6}{2} \qquad 3\mathbf{a} = \binom{9}{3}$$

2. a) $\mathbf{b} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$. Draw 2**b** and -**b** on this grid.

b) Write the column vectors for 2b and -b.

$$2\mathbf{b} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$$
 $-\mathbf{b} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$

3.
$$\mathbf{u} = \binom{3}{2}$$
 and $\mathbf{v} = \binom{-3}{4}$

Write as column vectors.

a)
$$3\mathbf{u}$$
 b) $2\mathbf{v}$ c) $-\mathbf{u}$ d) $-3\mathbf{v}$
 $3\mathbf{u} = \binom{9}{6}$ $2\mathbf{v} = \binom{-6}{8}$ $-\mathbf{u} = \binom{-3}{-2}$ $-3\mathbf{v} = \binom{9}{-12}$
 $4. \mathbf{s} = \binom{0}{2}$ and $\mathbf{t} = \binom{4}{-2}$

Write as column vectors.

a)
$$3\mathbf{s}$$
 b) $2\mathbf{t}$ c) $-4\mathbf{s}$ d) $-2\mathbf{t}$ $3\mathbf{s} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$ $2\mathbf{t} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$ $-4\mathbf{s} = \begin{pmatrix} 0 \\ -8 \end{pmatrix}$ $-2\mathbf{t} = \begin{pmatrix} -8 \\ 4 \end{pmatrix}$

5. Given that,

$$3\mathbf{a} = \binom{12}{9}$$
, $4\mathbf{b} = \binom{-4}{-8}$ and $2\mathbf{c} = \binom{-10}{2}$

Give these as column vectors

a)
$$\mathbf{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 b) $\mathbf{b} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ c) $5\mathbf{c} = \begin{pmatrix} -25 \\ 5 \end{pmatrix}$ d) $-\mathbf{c} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$

6. Given that, $\mathbf{e} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$ and $\mathbf{f} = \begin{pmatrix} -10 \\ 2 \end{pmatrix}$

Write as column vectors.

- a) A vector twice as long as f and in the same direction $\binom{-20}{4}$
- b) A vector the same léngth as e but in the opposite direction. $\begin{pmatrix} -4 \\ -9 \end{pmatrix}$