## Multiply a vector by a scalar

Maths

Miss Davies

## Multiply a vector by a scalar

1. a) $\mathbf{a}=\binom{3}{1}$. Draw 2a and $3 \mathbf{a}$ on this grid.

b) Write the column vectors for $2 \mathbf{a}$ and $3 \mathbf{a}$.
2. a) $\mathbf{b}=\binom{2}{-2}$. Draw $2 \mathbf{b}$ and $-\mathbf{b}$ on this grid.

b) Write the column vectors for $2 \mathbf{b}$ and $-\mathbf{b}$.

## Multiply a vector by a scalar

3. $\mathbf{u}=\binom{3}{2}$ and $\mathbf{v}=\binom{-3}{4}$

Write as column vectors.
a) $3 u$
b) $2 \mathbf{v}$
C) $-\mathbf{u}$
d) $-3 v$
4. $\boldsymbol{s}=\binom{0}{2}$ and $\mathbf{t}=\binom{4}{-2}$

Write as column vectors.
a) $3 s$
b) $2 t$
c) -4 s
d) $-2 t$
5. Given that,

$$
3 \mathbf{a}=\binom{12}{9}, 4 \mathbf{b}=\binom{-4}{-8} \text { and } 2 \mathbf{c}=\binom{-10}{2}
$$

Give these as column vectors
a) $\mathbf{a}$
b) $\mathbf{b}$
c) $5 \mathbf{c}$
d) $-\mathbf{c}$
6. Given that, $\quad \mathbf{e}=\binom{4}{9}$ and $\mathbf{f}=\binom{-10}{2}$

Write as column vectors.
a) A vector twice as long as $f$ and in the same direction
b) A vector the same length as e but in the opposite direction.

Answers

## Multiply a vector by a scalar

1. a) $\mathbf{a}=\binom{3}{1}$. Draw $2 \mathbf{a}$ and $3 \mathbf{a}$ on this grid.

b) Write the column vectors for $2 \mathbf{a}$ and $3 \mathbf{a}$.

$$
2 \mathbf{a}=\binom{6}{2} \quad 3 \mathbf{a}=\binom{9}{3}
$$

2. a) $\mathbf{b}=\binom{2}{-2}$. Draw $2 \mathbf{b}$ and $-\mathbf{b}$ on this grid.

b) Write the column vectors for $2 \mathbf{b}$ and $-\mathbf{b}$.

$$
2 \mathbf{b}=\binom{4}{-4} \quad-\mathbf{b}=\binom{-2}{2}
$$

## Multiply a vector by a scalar

3. $\mathbf{u}=\binom{3}{2}$ and $\mathbf{v}=\binom{-3}{4}$

Write as column vectors.
a) $3 \mathbf{u}$
b) $2 \mathbf{v}$
C) $-\mathbf{u}$
d) $-3 v$
$3 \mathbf{u}=\binom{9}{6} \quad 2 \mathbf{v}=\binom{-6}{8} \quad-\mathbf{u}=\binom{-3}{-2} \quad-3 \mathbf{v}=\binom{9}{-12}$
4. $\mathbf{s}=\binom{0}{2}$ and $\mathbf{t}=\binom{4}{-2}$

Write as column vectors.
a) $3 s$
b) $2 t$
C) -4 s
d) $-2 t$
$3 \mathbf{s}=\binom{0}{6} \quad 2 \mathbf{t}=\binom{8}{-4} \quad-4 \mathbf{s}=\binom{0}{-8} \quad-2 \mathbf{t}=\binom{-8}{4}$
5. Given that,

$$
3 \mathbf{a}=\binom{12}{9}, 4 \mathbf{b}=\binom{-4}{-8} \text { and } 2 \mathbf{c}=\binom{-10}{2}
$$

Give these as column vectors
a) $\mathbf{a}=\binom{4}{3}$
b) $\left.\mathbf{b}=\binom{-1}{-2} c\right) 5 \mathbf{c}=\binom{-25}{5}$
d) $\mathbf{- c}=\binom{5}{-1}$
6. Given that, $\quad \mathbf{e}=\binom{4}{9}$ and $\mathbf{f}=\binom{-10}{2}$

Write as column vectors.
a) A vector twice as long as $f$ and in the same direction $\binom{-20}{4}$
b) A vector the same length as e but in the opposite direction. $\binom{-4}{-9}$

