Chemistry - Key Stage 3 Energetics

#### Lesson 11 - Review 1



#### What has to happen to particles before they react?

B
Break apart
Slow down

C

Explode
Collide



#### What do all rate of reaction practical have to do?

A

Measure a change over time

C

Time how long it takes for a reactant to be used up

В

Time how long it takes for a precipitate to be formed

D

Time how quick a product is made



#### What is activation energy?

Δ

The energy given out when new bonds are formed

C

The minimum amount of energy a reaction needs to start

В

The maximum amount of energy a reaction needs to start

D

The energy taken in when bonds are broken



#### The rate of reaction is...



Quick all the way through every reaction

C

Quickest at the start of the reaction then slows down

В

The same speed through a reaction

D

Slowest at the start of the reaction then speeds up



#### Which one decreases the rate of reaction?

Particles have more kinetic energy

Use of a catalyst

C

Larger surface area of reactants

Lower concentration of reactants



#### Which one increases the rate of reaction?

A
Particles have less kinetic energy
Use of a gas syringe

C

Larger surface area of reactants

Lower concentration of reactants



#### The dependent variable is?

A

The variable we measure

C

The variable we control

B

The variable we change

D

The variable we keep the same



#### Increasing the surface area...

A

Decreases the rate of reaction

C

Increases the concentration of particles

В

Increases the number of successful collisions

D

Increases the number of particles



#### Decreasing the concentration...

A B
Increases the rate of reaction Increases the number of successful collisions

C D

Decreases the number of particles

Increases the number of particles



## Finish the equation: Potassium carbonate → ...... + carbon dioxide

A

Potassium dioxide

B

Potassium oxide

C

Potassium sulphate

D

Potassium chloride



#### During endothermic reactions...

Δ

The temperature of the surroundings increases

C

The particles decrease in temperature

B

The temperature of the surroundings usually decreases

D

The particle temperature increases



#### During exothermic reactions...

B

Bonds are broken Bonds are made then broken

C

Bonds are made

Bonds are broken and made



#### The products of complete combustion are?

A

Carbon dioxide and water

Carbon, water and soot

B

Carbon monoxide and water

D

Carbon minoxide and water



#### Correct the incorrect or poor statement

| Incorrect or poor statement                                                                          | Correct statement |
|------------------------------------------------------------------------------------------------------|-------------------|
| A reaction happens when reactants collide                                                            |                   |
| Increasing the concentration increases the rate of reaction because there are more collisions        |                   |
| The test for oxygen is to put <b>a blown out</b> splint into the gas and if it relights,  its oxygen |                   |
| Complete combustion <b>produces</b> more energy than incomplete combustion                           |                   |



#### Correct the incorrect or poor statement

| Incorrect or poor statement                                                                                                              | Correct statement |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2 control variables when testing the effect of surface area on the rate of reaction between HCl and calcium carbonate are:               |                   |
| The <b>amount</b> of carbonate                                                                                                           |                   |
| The <b>amount</b> of acid                                                                                                                |                   |
| The test for carbon dioxide is to <b>put a lit splint inside it and if the flame goes out,</b> it's carbon dioxide                       |                   |
| When investigating endothermic reactions a polystyrene cup is better because it <b>stops</b> energy being <b>lost</b> to the environment |                   |



### Identify the reaction: $4CH_4 + 5O_2 \rightarrow 2CO + 2C + 8H_2O$



# Identify the reaction: CuCO<sub>3</sub> → CuO + CO<sub>2</sub>



## Identify the reaction: Mg + O → MgO



## Identify the reaction: $K_2CO_3 \rightarrow K_2O + CO_2$



# Identify the reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$



#### Answers



#### What has to happen to particles before they react?

A B Break apart Slow down D Explode Collide



#### What do all rate of reaction practical have to do?

A

Measure a change over time

C

Time how long it takes for a reactant to be used up

B

Time how long it takes for a precipitate to be formed

D

Time how quick a product is made



#### What is activation energy?

A

The energy given out when new bonds are formed

C

The minimum amount of energy a reaction needs to start

B

The maximum amount of energy a reaction needs to start

D

The energy taken in when bonds are broken



#### The rate of reaction is...

A

Quick all the way through every reaction

C

Quickest at the start of the reaction then slows down

B

The same speed through a reaction

D

Slowest at the start of the reaction then speeds up



#### Which one decreases the rate of reaction?

A

Particles have more kinetic energy

В

Use of a catalyst

C

Larger surface area of reactants

D

Lower concentration of reactants



#### Which one increases the rate of reaction?

A

Particles have less kinetic energy

B

Use of a gas syringe

C

Larger surface area of reactants

D

Lower concentration of reactants



#### The dependent variable is?

Δ

The variable we measure

B

The variable we change

C

The variable we control

D

The variable we keep the same



#### Increasing the surface area...

A

Decreases the rate of reaction

B

Increases the number of successful collisions

C

Increases the concentration of particles

D

Increases the number of particles



#### Decreasing the concentration...

A

Increases the rate of reaction

C

Decreases the number of particles

B

Increases the number of successful collisions

D

Increases the number of particles



## Finish the equation: Potassium carbonate → ...... + carbon dioxide

A

Potassium dioxide

B

Potassium oxide

C

Potassium sulphate

D

Potassium chloride



#### During endothermic reactions...

A

The temperature of the surroundings increases

C

The particles decrease in temperature

B

The temperature of the surroundings decreases

D

The particle temperature increases



#### During exothermic reactions...

Δ

Bonds are broken

C

Bonds are made

B

Bonds are made then broken

D

Bonds are broken and made



#### The products of complete combustion are?

A

Carbon dioxide and water

В

Carbon monoxide and water

C

Carbon, water and soot

D

Carbon minoxide and water



#### Correct the incorrect or poor statement

| Incorrect or poor statement                                                                          | Correct statement                                                                                      |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| A reaction happens when reactants collide                                                            | A reaction happens when reactants collide with enough energy to start a reaction (activation energy)   |
| Increasing the concentration increases the rate of reaction because there are <b>more collisions</b> | Increasing the concentration increases the rate of reaction because there are more frequent collisions |
| The test for oxygen is to put <b>a blown out</b> splint into the gas and if it relights,  its oxygen | The test for oxygen is a <b>glowing</b> splint relights when put into oxygen gas                       |
| Complete combustion <b>produces</b> more energy than incomplete combustion                           | Complete combustion <b>releases</b> more energy than incomplete combustion                             |



#### Correct the incorrect or poor statement

| Incorrect or poor statement                                                                                                              | Correct statement                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 control variables when testing the effect of surface area on the rate of reaction between HCl and calcium carbonate are:               | The <b>mass</b> of carbonate  The <b>volume</b> of acid                                                                                                |
| The <b>amount</b> of carbonate                                                                                                           |                                                                                                                                                        |
| The <b>amount</b> of acid                                                                                                                |                                                                                                                                                        |
| The test for carbon dioxide is to <b>put a lit splint inside it and if the flame goes out,</b> it's carbon dioxide                       | The test for carbon dioxide is to bubble it through lime water and if the lime water goes cloudy, the gas is CO <sub>2</sub>                           |
| When investigating endothermic reactions a polystyrene cup is better because it <b>stops</b> energy being <b>lost</b> to the environment | When investigating endothermic reactions, a polystyrene cup is better because it <u>cuts down</u> on energy being <u>taken in</u> from the environment |



### Identify the reaction: 4CH<sub>4</sub> + 5O<sub>2</sub> → 2CO + 2C + 8H<sub>2</sub>O

Incomplete combustion

Exothermic



# Identify the reaction: CuCO₃ → CuO + CO₂

Thermal decomposition

Endothermic



## Identify the reaction: Mg + O → MgO

Oxidation

Exothermic



### Identify the reaction: $K_2CO_3 \rightarrow K_2O + CO_2$

Thermal decomposition

Endothermic



## Identify the reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Complete combustion

Exothermic

