
Lesson 1: While Loops  

Programming Part 3: Iteration

Computing

Rebecca Franks

   Materials from the Teach Computing Curriculum created by the National Centre for Computing Education1



Guess the number game

2



Syntax checklist

3

misspelled print,if, elif, else or while (this includes using capitals)

forgot the colon : at the end of a line containing while,if, elif or else

neglected to indent statements in the while-block, if-block, elif-block or else-block
indented while, if, elif or else by mistake

used = instead of == in a condition, to check if two values are equal

used quotes around the name of a variable

forgot to use quotes around a string literal (like "Monday")

forgot to use the f to display an fstring print (f”{guess}”)

Use this checklist to help you fix any errors in your code.



Task 1: Open the start program

Open this starting program oaknat.uk/comp-ks4-guessnumlivecode in Repl.it. 

Note that this is the same program that I just live coded with you.

4

1
2
3
4
5
6
7
8

number = 4
print("Guess a number between 1 and 10")
guess = int(input())
while guess != number:
  print("Incorrect")
  print("Guess a number between 1 and 10")
  guess = int(input())
print("Correct")



Task 2: Introduce a variable to count the 
guesses
Checklist:

5

Initialise the variable guesses first at the top of your program. 
Decide what line of code will increment the variable by 1 after each guess.
Place the line of code in the most appropriate place.
Test your new code by printing the variable to see if it increments after each guess.

Tip: in order to test your code is working you should print the variable guesses within your loop. 
When you are testing your code it should output the number of guesses made and this should 
increment each time. See the sample output on the next slide.



Task 2: Introduce a variable to count the 
guesses

6

Guess a number between 1 and 10
2
1 <- this displays what is being held in guesses
Incorrect
Guess a number between 1 and 10
8
2 <- this displays what is being held in guesses



Task 3: Display the number of guesses

At the end of the game it should reveal the number of guesses made by the user
Test your program using the table below as a guide

Example 
Note: Use this example to check your program. Given the input you see in this sample interaction, this is the output 
your program should produce.

The program displays a prompt and 
waits for keyboard input.

Guess a number between 1 and 10

The user types in a reply. 7

The program checks if 7 is not equal 
to 4. This is True so it displays.

Incorrect
Guess a number between 1 and 10

The user types in a new number. 4

The program checks if 4 is not equal 
to 4. This is False so it displays.

Correct
You guessed it in 2 attempts



Task 4: Only allow 3 guesses
Currently your program will allow an infinite number of guesses. This needs to now be limited to just 
3 guesses.

8

Change the condition on the while loop so that it will only continue to the next iteration if 
they haven’t guessed correctly and their number of guesses is less than 4. 
Use the table on the next slide to test your program.

* A while loop isn’t constantly evaluating the condition. It executes the entire sequence within the 
loop before re-evaluating the condition. This will affect the value that you use for the number of 
guesses in the condition.  



Task 4: Only allow 3 guesses
Example 
Note: Use this example to check your program. Given the input you see in this sample interaction, this is the 
output your program should produce.

The program displays a prompt and waits for 
keyboard input.

Guess a number between 1 and 10

The user types in a reply. 7
The program checks if 7 is not equal to 4 and if 
guesses are less than 3. This is True so it displays.

Incorrect
Guess a number between 1 and 10

The user types in a new number. 7
The program checks if 7 is not equal to 4 and if 
guesses are less than 3. This is True so it displays.

Incorrect
Guess a number between 1 and 10

The user types in a new number. 7
The program checks if 7 is not equal to 4 and if 
guesses are less than 3. This is False* so it displays.

Correct
You guessed it in 3 attempts

Note that this output is not what you might have expected. This will be addressed in the next task. 



Task 5: Displaying the correct message at 
the end of the game
Currently your program displays a message stating that the user has guessed correctly, even when 
they haven’t. This is because these two lines of code are executed when the loop terminates. 

10

print("Correct")
print(f"You guessed it in {guesses} attempts")

Implement selection to output Correct, and in n guesses! When the user 
guessed correctly. When the user didn’t guess correctly it should output Incorrect, 
guess limit reached.
Copy and complete testing table on the next slide to help you test your program.



Task 5: Displaying the correct message at 
the end of the game

11

Test 
Number

Test Input Expected Outcome Actual Outcome

1 3 Incorrect, guess a number 
between...

2 4 Correct, you guessed it 
in 2 attempts

3

4

5

6



Optional extension task

You can now make the game much more interesting by introducing a random number 
rather than always having the number set to 4.

In lesson 1 of the programming part 2 unit we learnt about the random function. 

Here are some code snippets to help you with this task.

12

from random import randint
number = randint(1,10)



Parson’s Puzzle

13



Instructions

Take a look at the code on the next slide. It contains all of the code needed to create a 
simple guess the word game. 

Your job is to rearrange the lines of code so that the program will:

● ask for a word to guess
● check if the word is not equal to Raspberry
● continue to check if the word is not equal to Raspberry
● when the word is equal to Raspberry it should display, ‘Well done, the word was 

Raspberry!’

Note: You might need to add indents if they are needed 

14



Parson’s Puzzle

15

1
2
3
4
5
6

print(f"Well done, the word was {word}!")
print("Try again...")
print("Guess the word")
word = input() 
word = input()
while word != "Raspberry":


