Solving adfected quadratic equations

Mr Coward

Try this

Find as many possible pairs of side lengths for each rectangle.

What do you notice?

Independent task

1) Solve the following equations
a) $(2 x-3)(5 x-2)=0$
b) $(2 x+3)(5 x+2)=0$
c) $0=(x-3)(x+2)$
d) $0=(3-x)(2+x)$
e) $(2 x+1)^{2}=0$
f) $0=(1-4 x)^{2}$
g) $x(3+x)=0$
h) $\frac{x}{5}(x+7)=0$
i) $\left(\frac{x}{4}+7\right)\left(7-\frac{x}{4}\right)=0$

Independent task

2) What has gone wrong?

$$
\begin{aligned}
& (2 x-6)(5 x-2)=3 \\
& \begin{aligned}
2 x-6 & =3 \\
+6 & \text { or }
\end{aligned} \quad 5 x-2=3 \\
& \frac{2 x}{2}=\frac{9}{2} \text { or } \frac{5 x}{5}=\frac{5}{5} \\
& x=\frac{9}{2} \text { or } \quad x=1
\end{aligned}
$$

3) The below shows a quintic equation, to the power 5 .
a) How do you know it will have a power of 5?
b) Find all the solutions of the quantic.

$$
x(x-2)(2 x+3)(3 x-4)(4 x+5)=0
$$

c) This quantic has five unique solutions, create a quantic with less than 5 solutions

Explore

Zaki says this bracket will have two unique solutions because the brackets are different, show Zaki is incorrect.

$$
(2 x-6)(3 x-9)=0
$$

Can you explain why the brackets give the same solution?
Can you find another bracket that would have worked to go with $(2 x-6) ?$
Can you create your own question like this?

