Lesson 13 - Revision 1

Physics-KS3
Forces and Motion

Mrs Wolstenholme

A force is a \qquad or \qquad on an object when it interacts with another object If two objects must be touching for a force to act, it is a \qquad force.

If two objects do not need to be touching for a force to act, it is a force.

Match force to description

A: Magnetism
B: Upthrust
C: Weight
D: Air resistance
E: Water resistance
F: Friction
G: Normal contact
H: Thrust

1: Forward push of an object moving on a solid surface
2: Attraction (pull towards) or repulsion (push away) of
magnets and magnetic materials
3: Attraction between two objects with mass (Gravity)
4: Upward push of water on an object
5: Force which slows objects moving along a solid surface
6: Upward push of a solid surface on an object
7: Force which slows objects moving through water
8: Force which slows objects moving through air

Contact or Non-contact?

A: Magnetism
B: Upthrust
C: Weight
D: Air resistance
E: Water resistance
F: Friction
G: Normal contact
H: Thrust

Normal Contact Force

Air
resistance

Thrust

Credit: public domain

If opposing forces are equal, the forces are \qquad .

If one of the opposing forces is larger than the other, the forces are \qquad

On a free body diagram, the length of the arrows represent the ___ of the force and the direction the arrows point represents the \qquad of the force.

We call the overall force the resultant force.
To calculate the overall force, we add forces in the same direction and subtract forces in opposite directions.

If the resultant force is 0 , the object is balanced and it will have a constant speed and direction.

If the resultant force is not 0 , the object will accelerate in the direction of the force. Its speed and direction could change.

	Resultant Force is O	Resultant Force is not 0
Balanced or Unbalanced?		
What will happen to its speed?		
What will happen to its direction?		

What will happen to the motorcycle?

The motorcycle is stationary. Calculate the resultant force and state which direction it will move in.

What will happen to the plane?

The plane is moving forwards. Calculate the resultant force and state what will happen.

Gravity is the force of attraction between any objects with mass.

All objects have a gravitational field around them, but it is only noticeable around huge objects like stars and planets.

The force caused by the gravitational field of a planet on an object is called its weight.

Sort the statements into mass or weight

Mass

 WeightDoes not depend on the gravitational field of the planet.
How much matter an object is made of.
Measured in Newtons (\mathbf{N})
Measured in g or kg
The force of gravity on an object.
Depends on the gravitational field.

$$
\div 1000
$$

Independent Practice

Weight
(N)

Values

Equation

Substitute

Rearrange

Answer

Units
= mass x
(kg)
gravitational field strength
(N / kg)

1. Calculate the weight of a 10 kg object in a gravitational field with a strength of $9 \mathrm{~N} / \mathrm{kg}$.
2. Calculate the weight of a 5 kg object in a gravitational field with a strength of $6 \mathrm{~N} / \mathrm{kg}$.
3. Calculate the weight of a $100 \mathbf{g}$ object in a gravitational field with a strength of $8 \mathrm{~N} / \mathrm{kg}$.
4. Calculate the mass of a 350 N object in a gravitational field with a strength of $7 \mathrm{~N} / \mathrm{kg}$.
