Mathematics

Rearranging quadratic equations

Try this

How many different ways can you write this equation?

$$2x + 3y = 5z$$

x	x	у	у	у
Z	Z	Z	Z	Z

This first two have been done for you:

$$\frac{2x + 3y}{5} = z$$

$$2x - 5x = 3y$$

Independent task

1) Write the following quadratics in the form $ax^2 + bx + c = 0$

a)
$$10x^2 + 11x + 3 = 9x - 1$$

$$b)10x^2 - 11x + 3 = 9x - 1$$

c)
$$10x^2 - 11x + 3 = 9x^2 - 1$$

$$d)9x^2 - 1 = 10x^2 - 11x + 3$$

e)
$$2x^2 = 10x^2 - 11x + 3$$

$$f) \ 2x^2 + 4x = 10x^2 + 3$$

$$g) -2x^2 + 4x = -10x^2 + 3$$

Independent task

2) Write the following quadratics in the form $ax^2 + bx + c = 0$

a)
$$(2x + 3)(3x - 4) = 0$$

b)
$$(x + 7)(x + 3) = 3x + 5$$

c)
$$(x + 4)(x + 3) = 3x(x + 5)$$

3) Write the following quadratics in the form $ax^2 + bx + c = 0$

$$a)3 + 4x = \frac{5}{x}$$

a)
$$3 + 4x = \frac{5}{x}$$
 b) $\frac{1}{2x} = 3x + 5$ c) $3 = \frac{x}{x^2 + 5}$

c)
$$3 = \frac{x}{x^2 + 5}$$

Explore

A quadratic equation

$$ax^2 + bx + c = 0$$

Has a x b x c = 24.

If a, b and c are positive integers, what are the possible values of a + b + c?

Write three different quadratic equations where a+b+c=12 and $a \times b \times c=24$.

