Use the sine rule to find a missing angle

Mr Clasper
Maths

Use the sine rule to find a missing angle

1. Find the size of angle a. Round your answer to 1 decimal place.

2. Find the size of the angle $X Y Z$. Round your answer to three significant figures.

Use the sine rule to find a missing angle

3. Baz is trying work out the size of the angle BAC.

Here is some of his working out.

$$
\sin (B A C)=13 \times \frac{18}{\sin 51}
$$

What mistake has he made?
4. Given that BCD is a straight line, calculate the size of angle ABC.
Round your answer to three significant figures. A

Answers

Use the sine rule to find a missing angle

1. Find the size of angle a. Round your answer to 1 decimal place.

$\sin (a)=9 \times \frac{\sin (40)}{12}=0.482$.
$\operatorname{Sin}^{-1}(0.482 \ldots . .)=.28.82203 \ldots \ldots \ldots . . \approx 28.8^{\circ}$
2. Find the size of the angle $X Y Z$. Round your answer to three

$$
\sin (X Y Z)=18 \times \frac{\sin (81)}{25}=0.711 \ldots \ldots \ldots
$$

$\operatorname{Sin}^{-1}(0.482 \ldots . .)=.45.3273 \ldots \ldots \ldots . . \approx 45.3^{\circ}$

Use the sine rule to find a missing angle

3. Baz is trying work out the size of the angle BAC.

Here is some of his working out.

$$
\sin (B A C)=13 \times \frac{18}{\sin 51}
$$

What mistake has he made?
Should be $\sin (B A C)=13 \times \frac{\sin (51)}{18}$
4. Given that BCD is a straight line, calculate the size of angle $A B C$.
Round your answer to three significant figures. A_{B}

$$
\begin{aligned}
& \frac{\sin (A B C)}{8}=\frac{\sin (63)}{9} \\
& \sin (A B C)=8 \times \frac{\sin (63)}{9}=0.792 .
\end{aligned}
$$

$$
\operatorname{Sin}^{-1}(0.482 \ldots . . .)=52.3733 \ldots \ldots
$$

