Lesson 10 - Calculating speed using an equation

Physics-KS3

Forces and Motion

Mrs Wolstenholme

Calculating Speed

Speed	$=$ distance \div	time
$(\mathbf{m} / \mathbf{s})$	(\mathbf{m})	(\mathbf{s})
$(\mathbf{m i l e} / \mathbf{h})$	$(\mathbf{m i l e})$	(\mathbf{h})
$(\mathbf{k m} / \mathbf{h})$	$(\mathbf{k m})$	(\mathbf{h})

Speed $=$ distance \div time

	I ran 100 m in 25 seconds. Calculate my average speed			
Values Equation Substitute	Distance $=100 \mathrm{~m}$. time $=25 \mathrm{~s}$ speed $=$ distance \div time			
Rearrange $\div 25$		\quad	Answer	Speed $=4$
:---	:---			
Units	m / s			

4 m/s

Speed $=$ distance \div time

	The train travelled $\mathbf{5 5 0} \mathbf{~ k m ~ i n ~} \mathbf{2 . 2}$ hours. Calculate my average speed.		
Values	Distance $=\mathbf{5 5 0} \mathbf{~ k m}$. time $=\mathbf{2 . 2} \mathbf{~ h}$		
Equation	Speed $=$ distance \div time		
Substitute	speed $=\mathbf{5 5 0} \div \mathbf{2 . 2}$		
Rearrange			Answer
:---			
Units		Speed $=\mathbf{2 5 0}$	
:---			
$\mathbf{k m} / \mathbf{h}$			

250 km/h

Speed $=$ distance \div time

	A caterpillar moved 2 m in 250 s. Calculate its speed.
Values	
Equation	
Substitute	

Speed $=$ distance \div time

	The tractor travelled 5 km in 0.4 h. Calculate its speed.	Usain Bolt set a record when he ran 100m in 9.58 seconds. What was his speed?
Values		
Equation		
Substitute		
Rearrange		
Answer		
Units		

Speed $=$ distance \div time

	A plane travelled 5,537 km from London to New York. The flight took 8 hours. Calculate its speed.	A snail moves 1 metre in 200 seconds. Calculate the speed.
Values		
Equation		
Substitute		
Rearrange		
Answer		
Units		

Speed $=$ distance \div time

	A car travels at $30 \mathrm{~km} / \mathrm{h}$. How far will the car have travelled after 1.5 h ?
Values	speed $=\mathbf{3 0} \mathbf{~ k m} / \mathbf{h}$. time $=\mathbf{1 . 5} \mathrm{h}$
Equation	Speed = distance \div time
Substitute	$30=$ distance $\div \mathbf{1 . 5}$ $30 \times 1.5=$ distance $\div \mathbf{1 . 5} \times 1.5$ $30 \times 1.5=$ distance
Rearrange	
Answer	$45=$ distance
Units	$\mathbf{k m}$

45 km

What is the next step?

$40=$ distance $\div 5$

Option 1

$40 \times 5=$ distance $\div 5 \times 5$

Option 3

$40 \div 5=$ distance $\div 5 \div 5$

Option 2

$40 \times 40=$ distance $\div 5 \times 40$

Option 4

PANIC!!

What is the next step?

$6.5=$ distance $\div 1.5$

Option 1

$$
6.5 \div 6.5=\text { distance } \div 1.5 \div 6.5
$$

Option 3

$6.5 \times 1.5=$ distance $\div 1.5 \times 1.5$

Option 2

$6.5 \div 1.5=$ distance $\div 1.5 \div 1.5$

Option 4

PANIC!!

What is the next step?

$35=$ distance $\div 4$

Option 1

Option 2

$35 \times 35=$ distance $\div 4 \times 35$

Option 4

$35 \times 4=$ distance $\div 4 \times 4$
PANIC!!

Speed $=$ distance \div time

	The fastest speed reached by a human in swimming is $2.2 \mathrm{~m} / \mathrm{s} . H e ~ c o m p l e t e d ~ t h e ~ r a c e ~ i n ~$ distance did he swim?
Values	
Equation	
Substitute	
Rearrange	
Answer	
Units	

	A man swims at a speed of $4 \mathrm{~m} / \mathrm{s}$. Calculate the distance swam in 25 seconds.	A skate boarder has a speed of 11 $\mathrm{~m} / \mathrm{s}$. Calculate the distance travelled in 2.5 seconds.
Values		
Equation		
Substitute		
Rearrange		
Answer		
Units		

Independent practice

1. A model car travels 30 metres in 3 seconds. Calculate the speed.
2. A snail moves 1 metre in 200 seconds. Calculate the speed.
3. A fish swim 5 metres in 3 seconds. Calculate the speed.
4. A cat runs with a speed of $4 \mathrm{~m} / \mathrm{s}$ for 30 seconds. Calculate the distance covered by the cat.
5. A motor bike has a speed of $20 \mathrm{~m} / \mathrm{s}$. Calculate the distance covered in 20 s

Same direction: Subtract

Opposite direction: Add

Two cars are travelling in the same direction on a road.
The blue car is travelling at $\mathbf{2 5} \mathbf{~ m} / \mathrm{s}$ in front of the yellow car, which is travelling at $\mathbf{3 0} \mathbf{m} / \mathrm{s}$. What is their relative speed?

Relative speed $=\mathbf{3 0} \mathbf{- 2 5}=5 \mathrm{~m} / \mathrm{s}$

Same direction: Subtract

Opposite direction: Add

A railway line and a road are side by side. A train and a car are travelling in the same direction, with the train in front of the car. The train travels at $52 \mathrm{~m} / \mathrm{s}$ and the car at $\mathbf{3 0} \mathrm{m} / \mathrm{s}$. What is their relative speed?

Relative speed $=\mathbf{5 2} \mathbf{- 3 0}=\mathbf{2 2} \mathrm{m} / \mathrm{s}$

Same direction: Subtract

Opposite direction: Add

Two cars are travelling on a road in opposite directions.
The blue car is travelling at $\mathbf{2 5} \mathbf{~ m} / \mathrm{s}$ and the yellow car is travelling at $\mathbf{3 0}$ m / s. What is their relative speed?

Relative speed $=\mathbf{2 5} \boldsymbol{+ 3 0}=\mathbf{5 5} \mathrm{m} / \mathrm{s}$

How do you calculate relative speed of two objects moving in opposite directions?

Option 1

Multiply them

Option 3

Subtract them

Option 2

Add them

Option 4

Divide them

How do you calculate relative speed of two objects moving in the same direction?

Option 1

Multiply them

Option 3

Subtract them

Option 2

Add them

Option 4

Divide them

Same direction: Subtract

Opposite direction: Add
Whilst tidying my lab, I was walking towards the bin at 4 mph and I threw a screwed-up piece of paper at 2 mph towards the bin. Calculate the relative speed of me and the paper.

Same direction: Subtract

Opposite direction: Add
Whilst walking away from the bin at 3 mph I threw a screwed-up piece of paper at 2 mph towards the bin.

Calculate what I would observe the speed of the screwed-up piece of paper to be.

Same direction: Subtract Opposite direction: Add

1. If you were travelling in the car at 40 mph , what speed would you observe an over-taking train travelling at 80 mph to be travelling at?
2. If you were travelling in a car that was travelling at 20 mph along the carriages of a train which was travelling in the same direction at 50 mph , what is their relative speed?
3. If you were travelling in a car at 30 mph and you threw a ball backwards at 3 mph , with what speed would you observe the ball to move away from you?
4. This morning I was travelling at 60 mph on the motorway when a car over took me. If the over-taking car was travelling at 73 mph , what speed did I observe the over-taking car to be travelling at?
5. Yesterday I was running at 5 mph along the canal when I over-took a barge travelling at 3 mph. At what speed did the barge captain observe my speed to be?
