Use Sine and Cosine to
 find a length

Maths

Miss Davies

Use Sine and Cosine to find a length

1. Complete the working out to find the length labelled x to 1 decimal place.

2. Complete the working out to find the length labelled x to 1 decimal place.

$$
\begin{gathered}
\sin (\theta)=\frac{o p p}{h y P} \\
\sin (\square)=\frac{\square}{x} \\
x=\frac{4}{\sin (\square)} \\
x=\square
\end{gathered}
$$

Use Sine and Cosine to find a length

3. Find the lengths labelled x.

Give your answers correct to 3 significant figures.

4. Spot the mistake.

$$
\begin{gathered}
\sin (38)=\frac{P Q}{2.1} \\
2.1 \times \sin (38)=P Q \\
1.29 m=P Q
\end{gathered}
$$

5. A ladder is placed against a wall. The base is 7.6 m from the bottom of the wall, at an angle of 60° with the floor.
What is the length of the ladder?

Answers

Use Sine and Cosine to find a length

1. Complete the working out to find the length labelled x to 1 decimal place.

2. Complete the working out to find the length labelled x to 1 decimal place.

$$
\begin{gathered}
\sin (\theta)=\frac{o p p}{h y p} \\
\sin (30)=\frac{4}{x} \\
x=\frac{4}{\sin (30)} \\
x=8 m
\end{gathered}
$$

Use Sine and Cosine to find a length

3. Find the lengths labelled x.

Give your answers correct to 3 significant figures.

4. Spot the mistake.

$$
\begin{gathered}
\sin (38)=\frac{P Q}{2.1} \\
2.1 \times \sin (38)=P Q \\
1.29 m=P Q
\end{gathered}
$$

Should have used cosine
5. A ladder is placed against a wall. The base is 1.6 m from the bottom of the wall, at an angle of 60° with the floor.
What is the length of the ladder? 3.2 m

