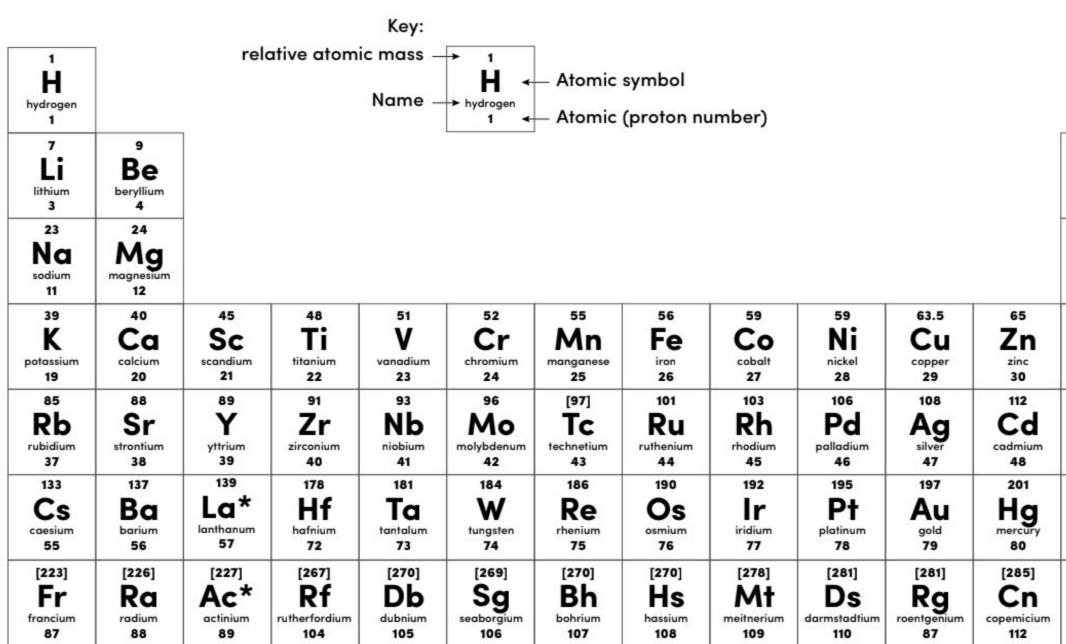
Combined Science - Chemistry - Key Stage 4


Quantitative Chemistry

Limiting Reactants - Higher

Mrs. Begum

Periodic Table of Elements

* The lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

		51			4 He helium 2
11	12	14	16	19	20
B	C	N nitrogen	0	F	Ne
5	6	7	oxygen 8	9	10
27	28	31	32	35.5	40
AI	Si	P	S	Cl	Ar
aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
70	73	75	79	80	84
Ga	Ge	As	Se	Br	Kr
gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
115	119	122	128	127	131
In	Sn	Sb	Te	1	Xe
indium	tin	antimony	tellurium	iodine	xenon
49 204	50	51	52	53	54
204 TI	207	Bi	[209]	[210] A +	[222]
thallium	Pb	DI	Po	AT	Rn
81	82	83	84	85	86
[286]	[289]	[289]	[293]	[293]	[294]
Nh	FI	Mc	Lv	Ts	Og
nihonium 113	flerovium 114	moscovium 115	livermorium 116	tennessine 117	organesson 118

Warm up

- 1. Calculate the relative formula mass of NaHCO_z (sodium hydrogen carbonate).</sub>
- 2. Deduce the charge on the carbonate ion in $CaCO_3$.
- Calculate the number of moles in 2 g of NaHCO₃. 3.
- Calculate the number of moles in 50 cm^3 of a 1 M solution. 4.
- 5. The symbol equation below shows the reaction between NaHCO₃ and ethanoic acid (vinegar), complete the equation:

 $NaHCO_3 + C_2H_3OOH \longrightarrow NaC_2H_3O_2 + ____ + ____$

Independent practice

1. $2Mg + O_2 \rightarrow 2MgO$

What is the limiting reactant when 900 g of magnesium is reacted with 800 g of oxygen?

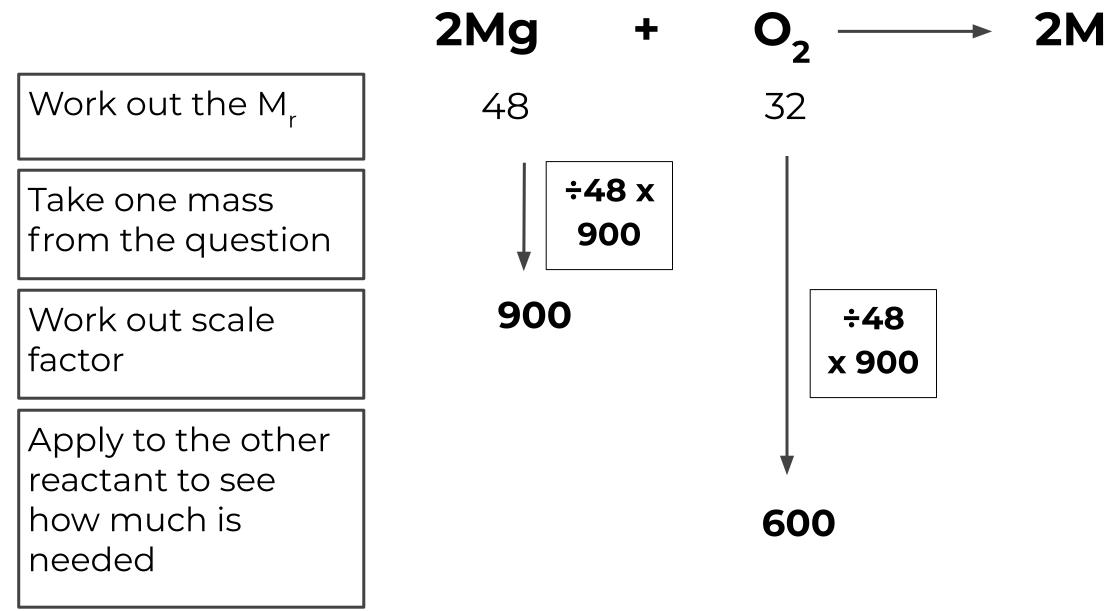
1. $4Na + O_{2} \rightarrow 2Na_{2}O$

If 40 kg of sodium was reacted with 20 kg of oxygen. What is the limiting reactant?

1. $2Fe + 3Cl_2 \rightarrow 2FeCl_3$

In a reaction, 0.896 g of iron was added to 0.8 g chlorine. What is the limiting reactant?

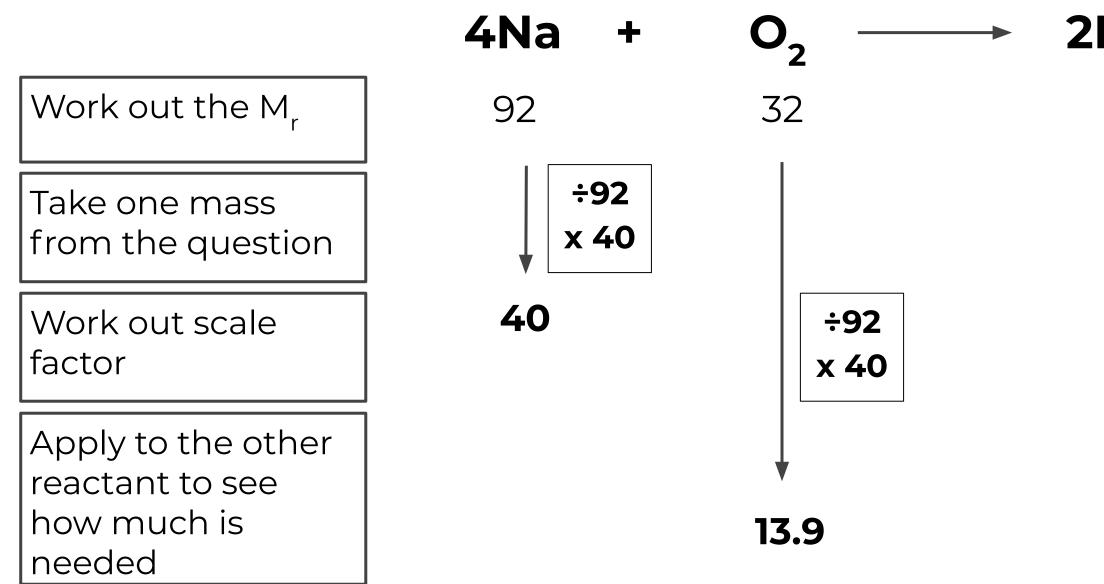
Warm up


- 1. Calculate the relative formula mass of NaHCO_z (sodium hydrogen carbonate).</sub> $23 + 1 + 12 + (16 \times 3) = 84$
- 2. Deduce the charge on the carbonate ion in CaCO₂. **HCO₂**⁻
- 3. Calculate the number of moles in 2 g of NaHCO₃. **2 / 84 = 0.024 mol**
- Calculate the number of moles in 50 cm³ of a 1 M solution. **1 x (50 / 1000) = 0.05 mol** 4.
- 5. The symbol equation below shows the reaction between NaHCO₂ and ethanoic acid (vinegar), complete the equation:

NaHCO₃ + C₂H₃OOH \longrightarrow NaC₂H₃O₂ + **CO₂** + **H₂O**

Independent practice review

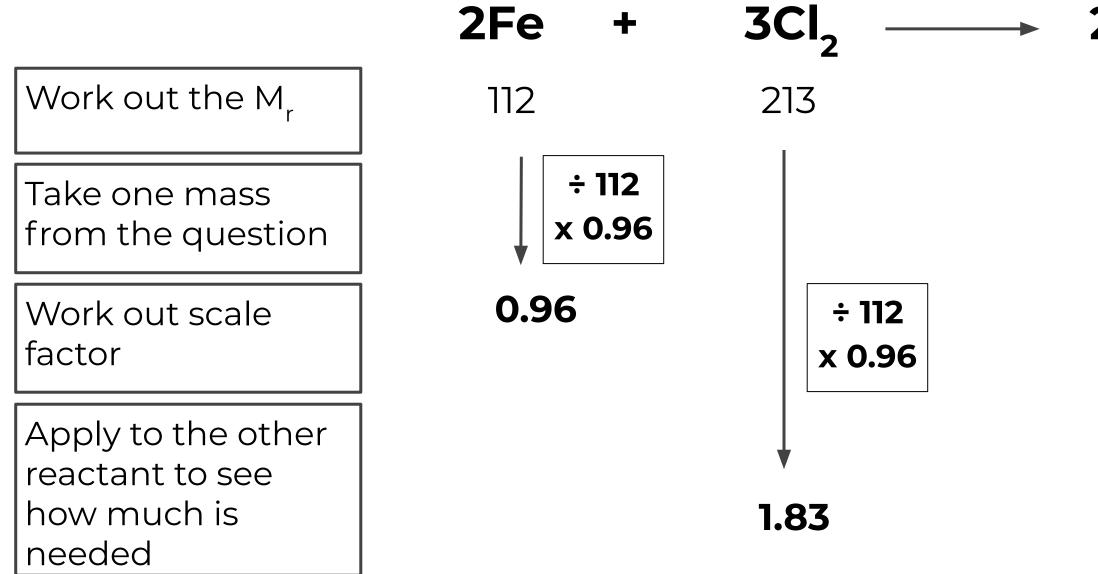
1. What is the limiting reactant when 900 g of magnesium is reacted with 800 g of oxygen?


2MgO 80

To react 900 g of Mg takes 600 g of O_2 . 800 g of O₂ has been added so Mg is the limiting reactant.

Independent practice review

2. If 40 g of sodium was reacted with 20 g of oxygen. What is the limiting reactant?


2Na,0 124

To react 40 g of Na needs 13.9 g of O₂. 20 g of O₂ has been added, so Na is the limiting reactant.

Independent practice review

3. In a reaction, 0.96 g of iron was added to 0.8 g chlorine. What is the limiting reactant?

2FeCl₃

325

To react 0.96 g of Fe takes 1.83 g of Cl₂. 0.8 g of Cl, has been added so \acute{Cl}_2 is the limiting reactant.

