Computing

Lesson 9: Coding Sorting
Algorithms

Algorithms

Kashif Ahmead

Materials from the Teach Computing Curriculum created by the National Centre for Computing Education

1

| &

Task 1 - Code for bubble sort

An implementation of a bubble sort in Python is shown in Figure 1. Read
through the code to familiarise yourself with it; don't worry If you don't
understand all of it yet.

| &

1 def bubble_sort(items):
2 num_items = len(items) # Initialise the variables
3 passes = 1

Repeat while the maximum numbers of passes has not been made
4 while passes < num_items:

Repeat for each pair of items
5 for current in range(num_items - 1):
Compare the item at the current position with the next item

6 if items|[current] > items|[current+1]:

Swap the out-of-order items

7 temp = items[current]
8 items[current] = items[current+1]
9 items[current+1] = temp

Increase the number of passes by 1

10 passes = passes + 1

Figure T

| @

Task 1 - Code for bubble sort

The following questions will be based on executing the algorithm in Figure 1
when items is the list: ['Maya', 'Dan’, 'Vivian', 'Tobl', 'Areeji'].

Examine Line 5 and state how many times the inner loop is performed on the
list above, I.e. how many pairs of items every single pass examines.

Examine Line 4 and state how many times the outer loop Is performed on the
list above, 1.e. how many passes the algorithm makes.

| &

Task 1 - Code for bubble sort

Complete the trace table below for lines 7 to 9 of the algorithm. The first line in
the trace table contains the values for the current variable and the items list.

items
Line | current temp [0] [1] [2] [3] [4]
0 - Maya Dan Vivian Tobi Areej
I4
8
9

| &

Task 2 - Improving bubble sort

Explain the purpose of Lines 7 to 9 in the bubble sort algorithm in Figure 1.

What happens when Line 12 is omitted from the algorithm in Figure 17

| &

Task 2 - Improving Bubble Sort - part 1

Reducing the number of comparisons

One improvement that could be made to the bubble sort algorithm is to
change the range of the inner loop on Line 5 from num_items -1to

num_items - passes.

| &

I def bubble_sort(items):
2 num_items = len(items) # Initialise the variables
3 passes = 1

Repeat while the maximum numbers of passes has not been made
4 while passes < num_items:

Repeat for the range num_items - passes
S for current in range(num_items - passes):
Compare the item at the current position with the next item

6 if items[current] > items[current+1]:

Swap the out-of-order items

7 temp = items[current]
8 items[current] = items[current+1]
° items[current+1] = temp

Increase the number of passes by T

10 passes = passes + 1

Figure 2

| @

Task 2 - Improving Bubble Sort - part 1

Complete the table below for tracing the two expressions num_items -1 and

num_items - passes when items is a list of eight items.

passes

num_items - 1

num_items - passes

1

2

3

| &

Task 2 - Improving Bubble Sort - part 1

Explain how changing the range of the inner loop to num_items - passes

increases the efficiency of the bubble sort algorithm compared to num_items -
1

10

| &

Task 2 - Improving Bubble Sort - part 2

Stopping when no swaps were made.

Now you are going to make a second improvement to the bubble sort
algorithm in Figure 2 by following the instructions below:

e |nsert the statements swapped = False and swapped = True In the
algorithm so that swapped Is reset to False at the beginning of each pass
and set to True only when a swap occurs.

1

| &

Task 2 - Improving Bubble Sort - part 2

e Modify the while condition so that the iteration continues only as long as

"swapped has been set to True in the previous pass, i.e. If at least one pair of
elements was swapped.

e Add comments to the code to explain the changes you made.

12

| &

1 def bubble_sort(items):
2 num_items = len(items) # Initialise the variables
3 passes = 1

Repeat while the maximum numbers of passes has not been made
4 while passes < num_items:

Repeat for each pair of items, reducing the number of
comparisons by the number of passes that have been completed
5 for current in range(num_items - passes):
Compare the item at the current position with the next item

6 if items[current] > items|[current+1]:

Swap the out-of-order items

7 temp = items[current]
8 items[current] = items[current+1]
9 items[current+1] = temp

H# Increase the number of passes by 1

10 passes = passes + 1

| @

Task 3 - Code for Insertion Sort - part 1

Demonstrating insertion sort

Describe how an insertion sort is performed..

| @

Task 3 - Code for Insertion Sort - part 1

Show the steps of an insertion sort on the list of data in Figure 3 to put the
elements into alphabetical order. Each pass should be on a new line and you

should clearly highlight which part of the list is the sorted sublist. The first row
has been filled in for you.

Element Chile Guyana Ecuador Brazil Peru @ Bolivia

Index O 1 2 3 4 5

Figure 3

15

| &

Task 3 - Code for Insertion Sort - part 1

Chile Guyana Ecuador Brazil Peru

16

Bolivia

| @

Task 3 - Code for Insertion Sort - part 1

Demonstrate how an insertion sort would place the following numbers into
ascending numerical order:

32, 8, 128, 16, 64, 256

17

| &

Task 3 - Code for Insertion Sort - part 1

18

| @

Task 3 - Code for Insertion Sort - part 2

An insertion sort algorithm

An implementation of an insertion sort in Python is shown in Figure 4. Read
through the code to familiarise yourself with it; don't worry If you don't
understand all of it yet.

19

| &

20

1 def insertion_sort(items):

2

num_items = len(items) # Initialise the variables
Repeat for each item in the unsorted part of the list
for first_unordered in range(1, num_items):
value = items[first_unordered] # Copy the first unordered item into value
current = first_unordered - 1 # set currentto the position before
Repeat while the start of the list has not been reached
and the current item Is greater than value
while current >= 0 and items|[current] > value:
Copy the item from the current position to the next element
items[current+1] = items|[current]
current = current - 1 # Proceed to the previous item in the list
Copy the value of the first unordered item into the correct position

items[current+1] = value

Figure 4

| &

Task 3 - Code for Insertion Sort - part 2

State the number of times the outer for loop would repeat if items were a list
of 10 itemes.

Hint: The first value of range is the start value and the second value is the stop
value.

Describe what Line 3 does during each iteration of the outer for loop.

2]

| &

Task 3 - Code for Insertion Sort - part 2

Explain the purpose of the condition items|[current] > value on Line 6.

22

| @

Task 3 - Code for Insertion Sort - part 2

Complete the trace table below for Lines 6 to 9 of the algorithm. The first line in
the trace table contains the items list after two passes of the algorithm
(first_unordered is now 3). The variables value and current after executing
Lines 4 and 5 have also been included in the table.

23

| &

Task 3 - Code for Insertion Sort - part 2

24

items
Line value current [0] [1] [2] [3] [4]
Abeer Lola Yara Carlos Tami
4 Carlos
5 3

| &

Task 3 - Code for Insertion Sort - part 2

Explain the purpose of Lines 7 to 8 in the insertion sort algorithm in Figure 4,
using the table above as an example.

What happens when line 9 is omitted from the algorithm in Figure 4~

25

| &

