
Lesson 9: Coding Sorting
Algorithms

Algorithms

Computing

Kashif Ahmed

Materials from the Teach Computing Curriculum created by the National Centre for Computing Education

Task 1 - Code for bubble sort

An implementation of a bubble sort in Python is shown in Figure 1. Read
through the code to familiarise yourself with it; don’t worry if you don’t
understand all of it yet.

1

 2

3

4

5

6

7

8

9

10

def bubble_sort(items):

num_items = len(items) # Initialise the variables

passes = 1

 # Repeat while the maximum numbers of passes has not been made

while passes < num_items:

 # Repeat for each pair of items

 for current in range(num_items - 1):

 # Compare the item at the current position with the next item

 if items[current] > items[current+1]:

 # Swap the out-of-order items

 temp = items[current]

 items[current] = items[current+1]

 items[current+1] = temp

 # Increase the number of passes by 1

 passes = passes + 1

Figure 1

Task 1 - Code for bubble sort

The following questions will be based on executing the algorithm in Figure 1
when items is the list: ['Maya', 'Dan', 'Vivian', 'Tobi', 'Areeji'].

Examine Line 5 and state how many times the inner loop is performed on the
list above, i.e. how many pairs of items every single pass examines.

Examine Line 4 and state how many times the outer loop is performed on the
list above, i.e. how many passes the algorithm makes.

Task 1 - Code for bubble sort

Complete the trace table below for lines 7 to 9 of the algorithm. The first line in
the trace table contains the values for the current variable and the items list.

 items

Line current temp [0] [1] [2] [3] [4]

 0 - Maya Dan Vivian Tobi Areej

7

8

 9

Task 2 - Improving bubble sort

Explain the purpose of Lines 7 to 9 in the bubble sort algorithm in Figure 1.

What happens when Line 12 is omitted from the algorithm in Figure 1?

Task 2 - Improving Bubble Sort - part 1

Reducing the number of comparisons

One improvement that could be made to the bubble sort algorithm is to
change the range of the inner loop on Line 5 from num_items - 1 to
num_items - passes.

Figure 2

1

2

3

4

5

6

7

8

9

10

def bubble_sort(items):

 num_items = len(items) # Initialise the variables

passes = 1

 # Repeat while the maximum numbers of passes has not been made

while passes < num_items:

 # Repeat for the range num_items - passes

 for current in range(num_items - passes):

 # Compare the item at the current position with the next item

 if items[current] > items[current+1]:

 # Swap the out-of-order items

 temp = items[current]

 items[current] = items[current+1]

 items[current+1] = temp

 # Increase the number of passes by 1

 passes = passes + 1

Complete the table below for tracing the two expressions num_items - 1 and
num_items - passes when items is a list of eight items.

passes num_items - 1 num_items - passes

1

2

3

4

5

6

7

Task 2 - Improving Bubble Sort - part 1

Explain how changing the range of the inner loop to num_items - passes
increases the efficiency of the bubble sort algorithm compared to num_items -
1.

Task 2 - Improving Bubble Sort - part 1

Stopping when no swaps were made.

Now you are going to make a second improvement to the bubble sort
algorithm in Figure 2 by following the instructions below:

● Insert the statements `swapped = False` and `swapped = True` in the
algorithm so that `swapped` is reset to False at the beginning of each pass
and set to True only when a swap occurs.

Task 2 - Improving Bubble Sort - part 2

● Modify the while condition so that the iteration continues only as long as
`swapped` has been set to True in the previous pass, i.e. if at least one pair of
elements was swapped.

● Add comments to the code to explain the changes you made.

Task 2 - Improving Bubble Sort - part 2

1

2

3

4

5

6

7

8

9

10

def bubble_sort(items):

 num_items = len(items) # Initialise the variables

passes = 1

 # Repeat while the maximum numbers of passes has not been made

while passes < num_items:

 # Repeat for each pair of items, reducing the number of

 # comparisons by the number of passes that have been completed

 for current in range(num_items - passes):

 # Compare the item at the current position with the next item

 if items[current] > items[current+1]:

 # Swap the out-of-order items

 temp = items[current]

 items[current] = items[current+1]

 items[current+1] = temp

 # Increase the number of passes by 1

 passes = passes + 1

Task 3 - Code for Insertion Sort - part 1

Demonstrating insertion sort

Describe how an insertion sort is performed..

Show the steps of an insertion sort on the list of data in Figure 3 to put the
elements into alphabetical order. Each pass should be on a new line and you
should clearly highlight which part of the list is the sorted sublist. The first row
has been filled in for you.

Task 3 - Code for Insertion Sort - part 1

Figure 3

Element Chile Guyana Ecuador Brazil Peru Bolivia

Index 0 1 2 3 4 5

Task 3 - Code for Insertion Sort - part 1

Chile Guyana Ecuador Brazil Peru Bolivia

Demonstrate how an insertion sort would place the following numbers into
ascending numerical order:

32, 8, 128, 16, 64, 256

Task 3 - Code for Insertion Sort - part 1

Task 3 - Code for Insertion Sort - part 1

An insertion sort algorithm

An implementation of an insertion sort in Python is shown in Figure 4. Read
through the code to familiarise yourself with it; don’t worry if you don’t
understand all of it yet.

Task 3 - Code for Insertion Sort - part 2

Figure 4

1

2

3

4

5

6

7

8

9

def insertion_sort(items):

 num_items = len(items) # Initialise the variables

 # Repeat for each item in the unsorted part of the list

 for first_unordered in range(1, num_items):

 value = items[first_unordered] # Copy the first unordered item into value

 current = first_unordered - 1 # set current to the position before

 # Repeat while the start of the list has not been reached

 # and the current item is greater than value

 while current >= 0 and items[current] > value:

 # Copy the item from the current position to the next element

 items[current+1] = items[current]

 current = current - 1 # Proceed to the previous item in the list

 # Copy the value of the first unordered item into the correct position

 items[current+1] = value

Task 3 - Code for Insertion Sort - part 2

State the number of times the outer for loop would repeat if items were a list
of 10 items.

Hint: The first value of range is the start value and the second value is the stop
value.

Describe what Line 3 does during each iteration of the outer for loop.

Task 3 - Code for Insertion Sort - part 2

Explain the purpose of the condition items[current] > value on Line 6.

Task 3 - Code for Insertion Sort - part 2

Complete the trace table below for Lines 6 to 9 of the algorithm. The first line in
the trace table contains the items list after two passes of the algorithm
(first_unordered is now 3). The variables value and current after executing
Lines 4 and 5 have also been included in the table.

Task 3 - Code for Insertion Sort - part 2

 items

Line value current [0] [1] [2] [3] [4]

Abeer Lola Yara Carlos Tami

4 Carlos

5 3

Task 3 - Code for Insertion Sort - part 2

Explain the purpose of Lines 7 to 8 in the insertion sort algorithm in Figure 4,
using the table above as an example.

What happens when line 9 is omitted from the algorithm in Figure 4?

