Mathematics

Distributive Property

Try this

How do you calculate

$23 \times 42 ?$

Why does your method work?

Independent task

Match the equivalent expressions.

$$
(x+12)(x+2)
$$

$$
x^{2}+10 x+24
$$

$$
(x+8)(x+3)
$$

$$
x^{2}+14 x+24
$$

Explore

\square

$$
(x+a)(x+b)
$$

Fill out the rest of the grid and give the expanded form of each expression.

What patterns can you spot?

Can you generalise these patterns?
a increases in this direction

		$\begin{aligned} & (x+1)(x+1) \\ & = \end{aligned}$		
	$\begin{aligned} & x(x+2) \\ & = \end{aligned}$	$\begin{aligned} & (x+1)(x+2) \\ & = \end{aligned}$	$\begin{aligned} & (x+2)(x+2) \\ & = \end{aligned}$	
$\begin{aligned} & (x-1)(x+3) \\ & =x^{2}+2 x-3 \end{aligned}$	$\begin{aligned} & x(x+3) \\ & =x^{2}+3 x \end{aligned}$	$\begin{gathered} (x+1)(x+3) \\ =x^{2}+4 x+3 \end{gathered}$	$\begin{aligned} & (x+2)(x+3) \\ & =x^{2}+5 x+6 \end{aligned}$	$\begin{aligned} & (x+3)(x+3) \\ & =x^{2}+6 x+9 \end{aligned}$
	$\begin{aligned} & x(x+4) \\ & = \end{aligned}$	$(x+1)(x+4)$	$(x+2)(x+4)$	
		$(x+1)(x+5)$		

Explore a increases in this direction

$$
(x+a)(x+b)
$$

			$\begin{aligned} & (x+1)(x+1) \\ & = \end{aligned}$		
		$\begin{aligned} & x(x+2) \\ & = \end{aligned}$	$\begin{aligned} & (x+1)(x+2) \\ & = \end{aligned}$	$\begin{aligned} & (x+2)(x+2) \\ & = \end{aligned}$	
$\begin{aligned} & \frac{T}{\tau} \\ & \stackrel{G}{n} \\ & \underset{\Omega}{n} \end{aligned}$	$\begin{aligned} & (x-1)(x+3) \\ & =x^{2}+2 x-3 \end{aligned}$	$\begin{aligned} & x(x+3) \\ & =x^{2}+3 x \end{aligned}$	$\begin{aligned} & (x+1)(x+3) \\ & =x^{2}+4 x+3 \end{aligned}$	$\begin{aligned} & (x+2)(x+3) \\ & =x^{2}+5 x+6 \end{aligned}$	$\begin{aligned} & (x+3)(x+3) \\ & =x^{2}+6 x+9 \end{aligned}$
$\begin{gathered} \stackrel{D}{1} \\ \stackrel{1}{+} \\ \stackrel{0}{0} \end{gathered}$		$\begin{aligned} & x(x+4) \\ & = \end{aligned}$	$\begin{aligned} & (x+1)(x+4) \\ & = \end{aligned}$	$\begin{aligned} & (x+2)(x+4) \\ & = \end{aligned}$	
∇			$\begin{aligned} & (x+1)(x+5) \\ & = \end{aligned}$		

