Mathematics

Solving pure quadratic equations

Mr Coward

Try this

Using substitution find a value for the expressions below,

when a)
$$x = 3$$
 and b) $x = -3$

$$x^2 + 11$$

$$11x^2$$

$$4x^2 + 5$$

$$5(x^2+1)-3$$

What do you notice?

Independent task

1) Solve the quadratic equations below.

a)
$$a^2 = 11$$

b)
$$b^2 = 16$$

a)
$$a^2 = 11$$
 b) $b^2 = 16$ c) $172 = c^2 + 3$ d) $150 = 15d^2$

d)
$$150 = 15d^2$$

e)
$$4e^2 + 3 = 27$$

f)
$$11 - 4f^2 = 10$$

e)
$$4e^2 + 3 = 27$$
 f) $11 - 4f^2 = 10$ g) $3 + 4g^2 = 27 - 2g^2$ h) $71 + h^2 = 71$

h)
$$71 + h^2 = 71$$

What is unusual about h?

2) Solve the quadratic equations below.

a)
$$(a + 1)^2 = 11$$

b)
$$2(b-3)^2 = 18$$

a)
$$(a + 1)^2 = 11$$
 b) $2(b - 3)^2 = 18$ c) $169 = (2x + 19)^2$

3) Optional challenge question: find the four solutions to Note this is a quartic equation, not a quadratic. $(2x^2 - 11)^2 + 11 = 36$

Explore

Placing any number in the gap, can you find 3 ways to make the following equation have:

$$3x^2 + 7 = [$$

- a) Integer solutions
- b) Have Irrational solutions

