Solving pure quadratic equations

Mr Coward

Try this

Using substitution find a value for the expressions below,
when a) $\mathrm{x}=3$ and b) $\mathrm{x}=-3$
$x^{2}+11$
$11 x^{2}$
$4 x^{2}+5$
$5\left(x^{2}+1\right)-3$
What do you notice?

Independent task

1) Solve the quadratic equations below.
a) $a^{2}=11$
b) $b^{2}=16$
C) $172=c^{2}+3$
d) $150=15 d^{2}$
e) $4 e^{2}+3=27$
f) $11-4 f^{2}=10$
g) $3+4 g^{2}=27-2 g^{2}$
h) $71+h^{2}=71$

What is unusual about h ?
2) Solve the quadratic equations below.
a) $(a+1)^{2}=11$
b) $2(b-3)^{2}=18$
c) $169=(2 x+19)^{2}$
3) Optional challenge question: find the four solutions to Note this is a quartic equation, not a quadratic. $\quad\left(2 x^{2}-11\right)^{2}+11=36$

Explore

Placing any number in the gap, can you find 3 ways to make the following equation have:

$$
3 x^{2}+7=[\quad]
$$

a) Integer solutions
b) Have Irrational solutions

