

1. Ron says,

- a) Explain why Ron might think this.
- b) Explain why Ron is incorrect.
- c) Factorise $3a^2 + 7a$

2. Factorise.

a)
$$a^2 + 5a$$

b)
$$5a + a^2$$

c)
$$5a^2 + 5a$$

d)
$$y^2 - 2y$$

e)
$$-2y + y^2$$

f)
$$2c - c^2$$

g)
$$b^2 + b + b$$

h)
$$b^2 - b - b$$

- Factorise
- a) $y^2 + ay$ b) $y^2 ay$
- c) $-y^2 ay$ d) $-y^2 ay$
- 4. Place these number cards in ascending order if y > 0

$$y + y^2$$

$$y^2 + 2y$$

- b) When y < 0 would they be in the Same order?
- Always

Sometimes

Never

Tick the right answer

- 5. Has 3a(2a + 4) been fully factorised?
- 6. Find the next term in the sequence.

$$a^2-3a$$
, (a^2-a) , $a(a+1)$, a^2+2a+a , ...

7. Find the missing values.

b)
$$-a^2 = a(3 - b)$$

c)
$$a(3-a) = -a^2 +$$

Answers

1. Ron says,

 $3a^2 + 7a$ will not factorise

- a) Explain why Ron might think this.

 Because 3 and 7 don't share a
 common factor greater than 1
- b) Explain why Ron is incorrect.

 a² and a share a common factor
- c) Factorise $3a^2 + 7a = a(3a + 7)$

2. Factorise.

a)
$$a^2 + 5a$$

= a(a + 5)

c)
$$5a^2 + 5a$$

$$= 5a(a + 1)$$

e)
$$-2y + y^2$$

$$= y(-2 + y)$$

g)
$$b^2 + b + b$$

$$= b(b + 2)$$

b)
$$5a + a^2$$

$$= a(5 + a)$$

d)
$$y^2 - 2y$$

$$= y(y-2)$$

f)
$$2c - c^2$$

$$= c(2 - c)$$

h)
$$b^2 - b - b$$

$$= b(b-2)$$

Factorise

a)
$$y^2 + ay$$
 b) $y^2 - ay$

$$) y^2 - ay$$

$$= y(y + a) = y(y - a)$$

c)
$$-y^2 - ay$$
 c) $-y^2 + ay$

$$= -y(y + a) = -y(y - a)$$

$$= -y(y - a)$$

4. Place these number cards in ascending order if y > 0

$$y + y^2$$

$$y^2 + 2y$$

$$y(y + 2.5)$$

b) When y < 0 would they be in the

Same order? Alwa Sometimes

5. Has 3a(2a + 6) been fully factorised?

No, should be 6a(a + 3)

6. Can you find the next term in this sequence? $a^2 + 5a$

$$a^2 - 3a$$
, $(a^2 - a)$, $a(a + 1)$, $a^2 + 2a + a$, ...

7. Find the missing values:

a)
$$a^2 + 4a = a(a + 4)$$

b)
$$3a - a^2 = a (3 - a^2)$$

c)
$$a(3-a) = a-a^2+2a \text{ or } 2a-a^2+a$$

