Lesson 8 - Investigating speed

Physics - KS3

Forces and Motion

Mrs Wolstenholme

Complete the task

A parachute

- 1. Which force pulls the parachute towards the Earth?
- 2. Which force eventually stops the parachute accelerating?
- 3. As the speed increases, what happens to the air resistance?

Investigation

As the area of the parachute increases, the drop time will (increase/decrease)

Area = length x width

Method

Read the method and identify these:

- a) Independent variable the variable you will change
- b) Dependent variable the result that you will measure
- c) Control variables the variables that must stay the same for every test

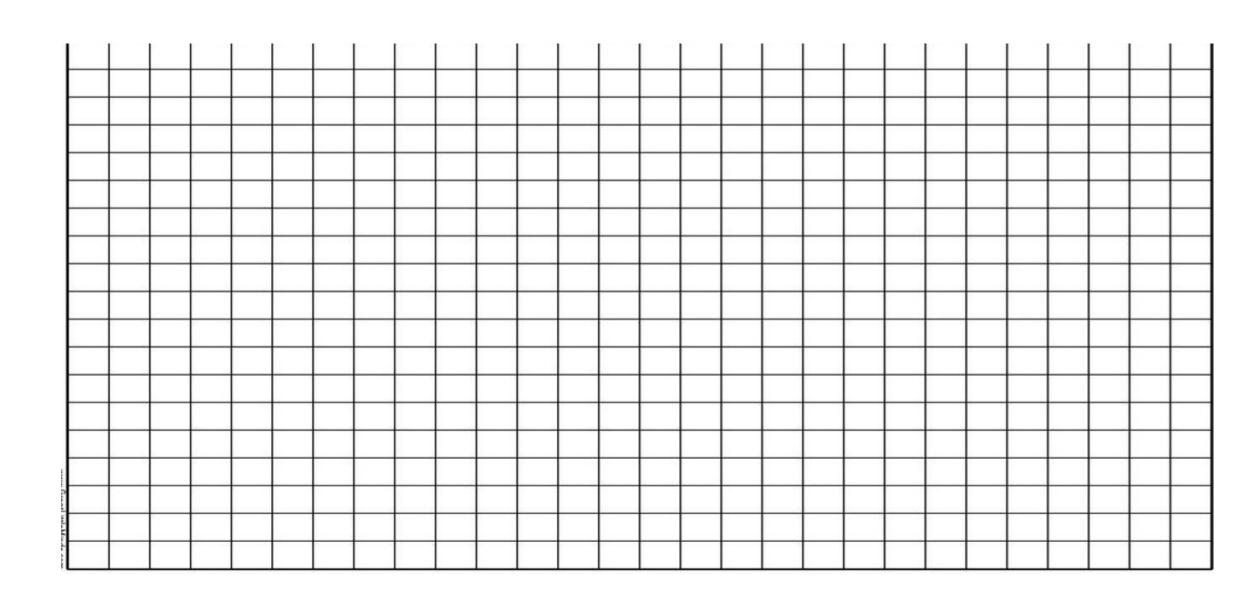
- 1. Attach the smallest parachute to the tennis ball using sellotape.
- 2. Drop the parachute and make sure the drop height is the same each time.
- 3. Measure the time taken to for the parachute to fall to the floor and record the result into your results table.
- 4. Repeat this measurement 3 times
- 5. Repeat steps 1-5 with each different size of parachute

Mean = (Test 1 + Test 2 + Test 3)


3

Area (cm²)	Drop Time (s)			
	Test 1	Test 2	Test 3	Mean
O	2.12	2.05	2.10	
528	2.53	2.62	2.57	
750	3.13	3.18	3.30	
1090	3.83	4.02	4.15	
2160	11.19	10.53	10.87	

Area (cm²)	Mean Drop Time (s)
O	2.09
528	2.57
750	3.20
1090	4.00
2160	10.86



Area (cm2)

Area (cm²)	Mean Drop Time (s)
0	2.09
528	2.57
750	3.20
1090	4.00
2160	10.86

Conclusion

- 1. How did the area of the parachute affect the drop time?
- 2. What is the evidence (use at least 2 sets of results as example)
- 3. Does this support/agree with your hypothesis?
- 4. Can you explain why the surface area affects the drop time this way?

Conclusion

How did the area of the parachute affect the drop time?
 The larger the area the _______ the drop time.

What is the evidence (use at least 2 sets of results as example)
 When the area was ______ the drop time was ______.

Does this support/ agree with your hypothesis?
 This means my hypothesis was ______.

Can you explain why the surface area affects the drop time?

