Combined Science - Chemistry - Key Stage 4

Quantitative Chemistry

Reacting Masses - Higher

Mrs. Begum

Periodic Table of Elements

				Key:													
1 H hydrogen 1	relative atomic mass H												He				
7 Li lithium 3	9 Be beryllium 4											B boron 5	C carbon	N nitrogen	16 O oxygen 8	19 F fluorine 9	Ne
Na sodium	Mg magnesium											Al aluminium 13	Si silicon	P phosphorus	32 S sulfur 16	35.5 Cl chlorine	Ar Ar argon 18
39 K potassium 19	Ca calcium 20	SC scandium 21	48 Ti titanium 22	Vanadium 23	Cr chromium	Mn manganese 25	Fe iron 26	Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	Br bromine 35	Kr krypton 36
Rb rubidium	Sr strontium	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium	96 Mo molybdenum 42	[97] TC technetium 43	Ru ruthenium	Rh rhodium	Pd palladium	Ag silver	Cd	115 In indium 49	Sn	Sb antimony	Te	127 iodine 53	Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	La*	178 Hf hafnium 72	181 Ta tantalum	184 W tungsten	186 Re	190 Os osmium 76	192	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallium 81	207 Pb	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[267] Rf rutherfordium 104	[270] Db dubnium 105	[269] Sg seaborgium 106	[270] Bh bohrium 107	[270] Hs hassium 108	[278] M† meitnerium 109	[281] DS darmstadtium	[281] Rg roentgenium 87	[285]	[286] Nh nihonium 113	[289] FI flerovium 114	[289] MC moscovium 115	[293] LV livermorium 116	[293] TS tennessine 117	[294] Og organesson 118

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

Independent practice

1. What mass of magnesium oxide is formed when 96 g of magnesium reacts with oxygen?

$$2Mg + O_2 \longrightarrow 2MgO$$

2. What mass of aluminium oxide is produced when 108 g of aluminium is burned in oxygen?

$$2AI + 3O_2 \rightarrow AI_2O_3$$

3. What mass of hydrogen is produced when 6 g of magnesium is reacted with hydrochloric acid?

$$Mg + 2HCI \longrightarrow MgCl_2 + H_2$$

Independent task

- 3. What mass of oxygen is needed to react with 8.5 g of hydrogen sulphide (H_2S)? $2H_2S + 3O_2 \longrightarrow 2SO_2 + 2H_2O$
- 4. What mass of potassium oxide is formed when 7.8 g of potassium is burned in oxygen? $4K + O_2 \longrightarrow 2K_2O$
- 5. What mass of aluminium oxide is produced when 135 g of aluminium is burned in oxygen?

$$4AI + 3O_2 \longrightarrow 2AI_2O_3$$

Some students investigated calcium oxide.

- (a) Calcium oxide has the formula CaO.
 - (i) Calculate the relative formula mass (M_r) of calcium oxide.

Relative atomic masses: O = 16; Ca = 40.

(ii) Calculate the percentage by mass of calcium in calcium oxide.

Percentage by mass of calcium in calcium oxide = _____%(1)

(iii) Calculate the mass of calcium needed to make 30 g of calcium oxide.

Mass of calcium = ______ g

(1)

(a) The formula of iron(II) sulfate is $FeSO_4$

Calculate the relative formula mass (M_r) of FeSO₄

Relative atomic masses: O = 16; S = 32; Fe = 56.

The relative formula mass $(M_r) = \underline{\hspace{1cm}}$

- **(2)**
- (b) What is the mass of one mole of iron(II) sulfate?

_____(1)

(c) What mass of iron(II) sulfate would be needed to provide 14 grams of iron? Remember to give the unit.

____(1) (Total 4 marks)

Relative formula mass (M_r) : $NH_4NO_3 = 80$ Calculate the number of moles of ammonium nitrate in the bag of fertiliser.	
Give your answer in standard form to 2 significant figures.	
Moles of ammonium nitrate =	mol (4)

Question 1 answers

(iii)
$$71/100 \times 30 = 21.3 g$$

Question 2 answers

(a)
$$56 + 32 + (4 \times 16) = 152$$

(b) 152g

(c)
$$152/4 = 38(g)$$

Convert 18.56kg in to grams

mass = 18.56x 1000 = 18560 g

Moles = mass / Mr

= 18560 / 80

= 232 mol

 $= 2.3 \times 10^2 \text{ mol}$

