Combined Science - Chemistry - Key Stage 4
Quantitative Chemistry

Reacting Masses - Foundation

Mrs. Begum

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Independent practice

1. A sample of magnesium is heated in air and the mass increases. Explain why.
2. Why does a thermal decomposition reaction appear to show a loss of mass?
3. Find the missing mass:
$\mathrm{MgCO}_{3} \longrightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
$84 \mathrm{~g} \quad 40 \mathrm{~g}$?
4. If 10 g of copper carbonate decomposes to produce 3.6 g of carbon dioxide, how much copper oxide was produced?
5. How much calcium oxide is produced by heating 50 g of calcium carbonate if 22 g of carbon dioxide is produced?

Question 1

Formulae and equations are used to describe chemical reactions.
a. Aluminium reacts with hydrochloric acid (HCl) to produce aluminium chloride, AlCl_{3} and hydrogen $\left(\mathrm{H}_{2}\right)$.
Complete and balance the equation for this reaction.
\qquad Al + \qquad \longrightarrow \qquad $+$ \qquad
b. Magnesium carbonate reacts with nitric acid to produce magnesium nitrate. Calculate the relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ Relative atomic masses $\left(A_{r}\right): N=14 ; O=16 ; M g=24$

Relative formula mass $\left(M_{r}\right)=$ \qquad

Question 2

Calcium oxide (quicklime) is made by heating calcium carbonate (limestone). calcium carbonate \longrightarrow calcium oxide + carbon dioxide

$$
200 \mathrm{~g} \quad ? \quad 88 \mathrm{~g}
$$

a. 88 grams of carbon dioxide is produced when 200 g calcium carbonate is heated. Calculate the mass of calcium oxide produced when 200 g of calcium carbonate is heated.
mass =
b. What mass of carbon dioxide could be made from 200 tonnes of calcium carbonate? mass = \qquad tonnes

Question 1 answers

a. $2 \mathrm{Al}+6 \mathrm{HCl} \longrightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
b. $24+2(14+(3 \times 16))$
$=148$

Question 2 answers

a. $200 g-88 g=112 g$
b. 88 tonnes

