Combined Science - Chemistry - Key Stage 4
Quantitative Chemistry

Reacting Masses - Foundation

Mrs. Begum

Periodic Table of Elements

				Key:													
1 H hydrogen 1	relative atomic mass H										He						
7 Li lithium 3	9 Be beryllium 4									B boron 5	C carbon	N nitrogen	16 O oxygen 8	19 F fluorine 9	Ne		
Na sodium	Mg magnesium											Al aluminium 13	Si silicon	P phosphorus	32 S sulfur 16	35.5 Cl chlorine	Ar Ar argon 18
39 K potassium 19	Ca calcium 20	SC scandium 21	48 Ti titanium 22	Vanadium 23	Cr chromium	Mn manganese 25	Fe iron 26	Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	Br bromine 35	Kr krypton 36
Rb rubidium	Sr strontium	89 Y yttrium 39	91 Zr zirconium 40	Nb niobium	96 Mo molybdenum 42	[97] TC technetium 43	Ru ruthenium	Rh rhodium	Pd palladium	Ag silver	Cd	115 In indium 49	Sn	Sb antimony	Te	127 iodine 53	Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	La*	178 Hf hafnium 72	181 Ta tantalum	184 W tungsten	186 Re	190 Os osmium 76	192	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallium 81	207 Pb	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[267] Rf rutherfordium 104	[270] Db dubnium 105	[269] Sg seaborgium 106	[270] Bh bohrium 107	[270] Hs hassium 108	[278] M† meitnerium 109	[281] DS darmstadtium	[281] Rg roentgenium 87	[285]	[286] Nh nihonium 113	[289] FI flerovium 114	[289] MC moscovium 115	[293] LV livermorium 116	[293] TS tennessine 117	[294] Og organesson 118

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

Independent practice

- 1. A sample of magnesium is heated in air and the mass increases. Explain why.
- 2. Why does a thermal decomposition reaction appear to show a loss of mass?
- 3. Find the missing mass:

$$MgCO_3 \longrightarrow MgO + CO_2$$

84 g 40 g ?

- 4. If 10 g of copper carbonate decomposes to produce 3.6 g of carbon dioxide, how much copper oxide was produced?
- 5. How much calcium oxide is produced by heating 50 g of calcium carbonate if 22 g of carbon dioxide is produced?

Question 1

Formulae and equations are used to describe chemical reactions.

a. Aluminium reacts with hydrochloric acid (HCl) to produce aluminium chloride, $AlCl_3$ and hydrogen (H₂).

Complete and balance the equation for this reaction.

AI +		 +

b. Magnesium carbonate reacts with nitric acid to produce magnesium nitrate.

Calculate the relative formula mass (M_r) of magnesium nitrate, $Mg(NO_3)_2$

Relative atomic masses (A_r): N = 14; O = 16; Mg = 24

Relative formula mass $(M_r) =$

Question 2

Calcium oxide (quicklime) is made by heating calcium carbonate (limestone). calcium carbonate ———— calcium oxide + carbon dioxide

200 g **?** 88 g

a. 88 grams of carbon dioxide is produced when 200 g calcium carbonate is heated. Calculate the mass of calcium oxide produced when 200 g of calcium carbonate is heated.

mass =_____ g

(1)

b. What mass of carbon dioxide could be made from 200 tonnes of calcium carbonate?

mass =_____ tonnes

(1)

(Total 2 marks)

Question 1 answers

b.
$$24 + 2(14 + (3 \times 16))$$

= 148

Question 2 answers

b. 88 tonnes

