Combined Science - Chemistry - Key Stage 4
Quantitative Chemistry

Relative Formula Mass - Higher

Mrs. Begum

Periodic Table of Elements

\dot{H}		$\begin{aligned} & \text { relative atomic mass } \\ & \text { Name } \rightarrow \underset{\text { hudgogen }}{\mathbf{H}} \rightarrow \text { Atomic (proton number) }\end{aligned}$															
Li	$\dot{\mathrm{Be}}$											$\underset{\substack{\text { bason } \\ \text { cin }}}{\text { B }}$	$\underset{\substack{\text { catase } \\ \text { cos }}}{12}$	$\xrightarrow[\substack{\text { minosen } \\ \text { min }}]{14}$	$\overbrace{\substack{\text { counge } \\ \text { oup }}}^{16}$	$\stackrel{19}{\substack{19}}$	$\underset{\substack{\text { neom } \\ \text { neo }}}{20}$
$\begin{aligned} & { }^{23} \\ & \mathrm{Na} \end{aligned}$	$\mathrm{mg}_{\text {meng }}^{24}$																
	$\underset{\substack { \text { cutaium } \\ \begin{subarray}{c}{40 \\ \text { cio }{ \text { cutaium } \\ \begin{subarray} { c } { 4 0 \\ \text { cio } } }\end{subarray}}{ }$					$\underbrace{\text { s5 }}_{\substack{\text { meanemem } \\ \text { cis }}}$	$\begin{aligned} & \text { so } \\ & \text { Five } \end{aligned}$				$\underset{\substack{\text { cin } \\ \text { Zn } \\ 30}}{\substack{n}}$	$\substack{\begin{subarray}{c} { G a m \\ \begin{subarray}{c}{3 i n i m{ G a m \\ \begin{subarray} { c } { 3 i n i m } } \end{subarray}} \end{subarray}$	$\underset{\substack{\text { gememim } \\ 32}}{\text { en }}$				
										$\underset{4}{\text { ag }}$			$\underset{\substack{109 \\ 50 \\ 50}}{110}$				
							$\underset{\substack{\text { cosum } \\ \text { cism }}}{100}$									$\underset{\substack{\text { atatiom } \\ \text { asis }}}{\substack{\text { atiol }}}$	
												$\underset{\substack{\text { anominm } \\ \text { nis }}}{\substack{\text { 228] }}}$					

Percentage composition questions

1. Calculate the percentage composition for the named element in these compounds:
a) Aluminium in $\mathrm{Al}_{2} \mathrm{O}_{3}$
b) Oxygen in $\mathrm{K}_{2} \mathrm{SO}_{4}$
c) Hydrogen in $\mathrm{Al}(\mathrm{OH})_{3}$
d) Nitrogen in $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Relative atomic masses:

- $\mathrm{Al}=27$
- $\mathrm{H}=1$
- $\mathrm{K}=39$
- $\mathrm{Mg}=24$
- $N=14$
- $O=16$
- $\mathrm{S}=32$
- $C u=63.5$

Relative formula mass question

2. The relative formula mass of a Group 1 sulphate is 174 .

The formula is $\mathrm{X}_{2} \mathrm{SO}_{4}$.
Relative atomic masses $\left(A_{r}\right): S=32 \quad O=16$
a) Calculate the relative atomic mass of the Group 1 metal.
b) Name the metal.

Exam Question 1

3. Potassium nitrate is another nitrogen compound. It is used in fertilisers. It has the formula KNO_{3}.

The $\mathbf{M}_{\mathbf{r}}$ of potassium nitrate is 101 .
Calculate the percentage of oxygen by mass in potassium nitrate.
Relative atomic mass: $O=16$.

Percentage of oxygen $=$

Exam Question 2

4. (a) The diagram shows an atom of calcium and an atom of chlorine.

Calcium

Chlorine

(b) Calculate the relative formula mass $\left(M_{r}\right)$ of calcium chloride $\left(\mathrm{CaCl}_{2}\right)$.

Relative atomic masses $\left(A_{r}\right)$: calcium $=40$; chlorine $=35.5$
Relative formula mass $\left(M_{r}\right)=$

Describe, in terms of electrons, how calcium atoms and chlorine atoms change into ions to produce calcium chloride $\left(\mathrm{CaCl}_{2}\right)$.
(4)

Credit - Calcium and chlorine atom by Pumbaa, Wikimedia Commons.

Exam Question 3

5.

(a) The percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is calculated by the equation:

$$
\text { percentage by mass }=\frac{\text { number of atoms of } \mathrm{O} \times \text { Relative atomic mass of oxygen }(\mathrm{O})}{\text { relative molecular mass of carbon dioxide }\left(\mathrm{CO}_{2}\right)} \times 100
$$

Relative atomic masses $\left(A_{r}\right): \quad C=12 \quad O=16$
Calculate the percentage by mass of oxygen in carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Answers

1. a) 52.9%
b) 45.1%
c) 3.8%
d) 18.9%
2. a) 39
b) Potassium
3. 47.5%
4. a) Calcium loses two electrons
two atoms of chlorine gain one electron each
b) $40+(2 \times 35.5)=111$
5. a) $M_{r}=12+(2 \times 16)$
$M_{r}=44$
Mass of oxygen $=2 \times 16=32$
$32 / 44 \times 100=72.7 \%$
