Solve where $x y=a$ and $y=2 x+1$ (substituting)

Maths

Mrs Dennett

Solve where $x y=a$ and $y=2 x+1$ (substituting)

1. Solve by substitution
2. Solve by substitution

$$
\begin{aligned}
x y & =-16 \\
y & =x-8
\end{aligned}
$$

$$
\begin{aligned}
x y & =15 \\
y & =2 x+7
\end{aligned}
$$

Solve where $x y=a$ and $y=2 x+1$ (substituting)

3. Tom and Jim are solving these equations

$$
\begin{gather*}
x y=3 \\
y-8 x=10 \tag{B}
\end{gather*}
$$

Which method do you think will be easier to use?

Solve the equations.

They both decide to rearrange the equation B in order to solve by substitution.

$$
y=8 x+10 \quad x=\frac{y-10}{8}
$$

Solve where $x y=a$ and $y=2 x+1$ (substituting)

4. Solve this pair of equations, giving your answers to 2 decimal places.

$$
\begin{aligned}
x y & =7 \\
y & =4 x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { HINT: } \quad \text { If } \mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0 \\
& \\
& x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

Answers

Solve where $x y=a$ and $y=2 x+1$ (substituting)

1. Solve by substitution
2. Solve by substitution

$$
\begin{gathered}
x y=15 \\
y=2 x+7 \\
2 x^{2}+7 x-15=0 \\
(2 x-3)(x+5) \\
x=\frac{3}{2} \text { and } y=10 \\
x=-5 \text { and } y=-3
\end{gathered}
$$

Solve where $x y=a$ and $y=2 x+1$ (substituting)

3. Tom and Jim are solving these equations

$$
\begin{gather*}
x y=3 \tag{A}\\
y-8 x=10 \tag{B}
\end{gather*}
$$

They both decide to rearrange the equation B in order to solve by substitution.

$$
y=8 x+10
$$

$$
x=\frac{y-10}{8}
$$

Which method do you think will be easier to use?

Solve the equations.

$$
x=-\frac{3}{2} \text { and } \mathrm{y}=-2
$$

$$
x=\frac{1}{4} \text { and } y=12
$$

Solve where $x y=a$ and $y=2 x+1$ (substituting)

4. Solve this pair of equations, giving your answers to 2 decimal places.

$$
\begin{array}{rlrl}
x y & =7 & x & =1.29 \text { and } y=5.43 \\
y & =4 x+1 & x & =-1.54 \text { and } y=-4.55
\end{array}
$$

HINT:

$$
\begin{aligned}
& \text { If } a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

