Newton's Laws

Mr Saville

Independent Practice

1. A car with a mass of $2,000 \mathrm{~kg}$ accelerates at $3 \mathrm{~m} / \mathrm{s}^{2}$. How much force is required to make this happen?
2. A skateboard with a mass of 1.5 kg accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$. How much force is required to make this happen?
3. A truck with a mass of $16,000 \mathrm{~kg}$ accelerates at $1.25 \mathrm{~m} / \mathrm{s}^{2}$. How much force is required to make this happen?
4. A 2 g paper airplane accelerates at $1.2 \mathrm{~m} / \mathrm{s}^{2}$. How much force is required to make this happen?
5. A man with a weight of 780 N accelerates at $3 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the force required.

Independent Practice

1. A horse has a mass of $2,000 \mathrm{~kg}$. If this horse requires $3,000 \mathrm{~N}$ of force to move, how much acceleration does this produce?
2. A remote control car accelerates at $1.75 \mathrm{~m} / \mathrm{s} 2$. If the engine of the remote control car produces a force of 50 N , what is the mass of the car?
3. A man has a mass of 60 kg and uses 2000 N of force to move. Calculate his acceleration.
4. A motor bike engine exerts 1500 N of thrust against 600 N of friction. Calculate the resultant force. If the bike has a mass of 300 kg , calculate the acceleration of the bike.
5. A woman jumps into the air with a force of 700 N . If her weight (force acting downward) is 600 N , calculate the resultant force. If her mass is 60 kg , calculate her acceleration.

Independent Practice

Describe Newton's third law (the action and reaction) in the 3 examples

Bouncing on a trampoline

Swimming

An owl flying

HT ONLY- Inertial Mass

Mass is usually thought of as the amount of matter (stuff) in an object...

At GCSE, there is another definition: Inertial mass is a measure of how difficult it is to change the $v _$___of an object: it is defined as the ratio of f ____over ac

