Circle Theorems: Angle at the centre and angle at the circumference Maths

Mr Chan

Circle Theorems: Angle at the centre and angle at the circumference

1. Work out the size of each angle marked with a letter.

Give a reason for your answers.
a)
c)

b)

d)
2. Work out the size of each angle marked with a letter.

Give a reason for your answers.
a)
c)

b)

Circle Theorems: Angle at the centre and angle at the circumference

3. Work out the size of each angle marked with a letter.

Give a reason for your answers.
a)
c)

b)

d)

4. Prove that the angle at the centre of a circle is twice the angle at the circumference when both are subtended by the same arc.

Answers

Circle Theorems: Angle at the centre and angle at the circumference

1. Work out the size of each angle marked with a letter.

Give a reason for your answers.
a)
c)

60°
b)
d)

2. Work out the size of each angle marked with a letter.

Give a reason for your answers.
a)

110°
b)

c)

d)

80°

Circle Theorems: Angle at the centre and angle at the circumference

3. Work out the size of each angle marked with a letter.

Give a reason for your answers.
a)
c)

The angle at the centre is twice the angle at the circumference.

Circle Theorems: Angle at the centre and angle at the circumference

4. Prove that the angle at the centre of a circle is twice the angle at the circumference when both are subtended by the same arc.

Draw line from O to C (radius).

Let angle $A C O=x$ and $B C O=y$ and $A O B=z$
angle $\mathrm{ACO}=$ angle $\mathrm{CAO}=x$ (base angles in an isosceles triangle)
angle $\mathrm{BCO}=$ angle $\mathrm{CBO}=\mathrm{y}$ (base angles in an isosceles triangle)
angle $A O C=180-2 x$ (angles in a triangle add up to 180°)
angle $B O C=180-2 y$ (angles in a triangle add up to 180°)
angle z = 360 - AOC - BOC (angles around a point add up to 360 ${ }^{\circ}$)
$z=360-(180-2 x)-(180-2 y)$
$z=360-180+2 x-180+2 y$
$z=2 x+2 y$
$z=2(x+y)$
$A O B=2 A C B$

