Combined Science FT- Biology - KS4 Homeostasis and Response

The Nervous System and Homeostasis Review Lesson - Foundation

Miss Ray

Copy and complete

State where the receptors to each of these stimuli are found:

<u>Stimulus</u>	Location of
Light intensity	
Temperature	
Pressure	
Sound	

receptors

Answers

State where the receptors to each of these stimuli are found:

<u>Stimulus</u>	Location of
Light intensity	Eyes
Temperature	Skin
Pressure	Skin
Sound	Ears

receptors

Skin receptor density

Location	Density (per mm ²)	
Fingertips	5	
Bicep	0.4	
Thigh	0.05	

- 1. In which location are the receptors found closest together?
- 2. Why are injections commonly given in the bicep or thigh?
- 3. The eye has a light receptor density of 8 per mm², the fingertips have a light receptor density of 0 per mm². What stimulus do each of these locations receive?
- 4. The eye also contains pressure receptors, why is this?

thigh? he fingertips have a light ach of these locations receive? s?

Answers

- 1. In which location are the receptors found closest together? **Fingertips**
- 2. Why are injections commonly given in the bicep or thigh?

The receptors are less dense/more spread out in these areas. It will be less painful as less receptors will be stimulated.

Answers

3. The eye has a light receptor density of 8 per mm², the fingertips have a light receptor density of 0 per mm². What stimulus do each of these locations receive?

Eye - light reflected into the eye Fingertips - pressure/temperature

4. The eye also contains pressure receptors, why is this?

Detect when something is in the eye that could potentially cause damage e.g. an eyelash that has fallen into the eye.

1. Name a hormone that is secreted by the adrenal gland.

2. Name the hormone that is secreted by the thyroid gland.

3. True or false - insulin is released when blood glucose concentrations are too high.

4. True or false - glycogen is insoluble.

1. Name a hormone that secreted by the adrenal gland.

2. Name the hormone that is secreted by the thyroid gland.

3. True or false - insulin is released when blood glucose concentrations are too high.

4. True or false - glycogen is insoluble. **True**

e concentrations are too high. **True**

Receptors detect the change and send a signal to the coordination centre.

Glucose concentration increases.

Normal blood glucose concentrations

Response?

Conditions return to normal and responses are switched off.

Receptors detect the change and send a signal to the coordination centre.

The pancreas releases insulin. This stimulates the liver cells to convert glucose into glycogen.

Glucose concentration increases.

Normal blood glucose concentrations

Conditions return to normal and responses are switched off.

Exam style questions

1. Explain the effect an insulin injection has on the body. [4]

Insulin travels in the ______ and stimulates the ______ cells to convert _____

into ______. This reduces the blood glucose concentration.

2. State two differences between type 1 and type 2 diabetes [2]

Exam style questions

1. Explain the effect an insulin injection has on the body. [4]

Insulin travels in the **blood** and stimulates the **liver** cells to convert **glucose** into **glycogen**. This reduces the blood glucose concentration.

2. State two differences between type 1 and type 2 diabetes [2]

- Type I caused when the pancreas does not secrete insulin, type 2 is caused by the cells no longer responding to insulin
- Type 1 is genetic, type 2 is not.
- Type 1 is often diagnosed in childhood, type 2 is often diagnosed in later life.
- Type 2 can be controlled by following a strict diet, type 1 is controlled with insulin injections.

Copy and complete

Nervous Control
Electrical
Effectors (muscles or glanc
Short lasting

	Hormonal control	
	Blood stream	
ds)		
	Slow	
	Effects are seen around the body	

Copy and complete

	Nervous Control	Hormonal control
What is the signal?	Electrical	Chemical
How is it transported?	Neurones/nerve cells	Blood stream
Where does it travel to?	Effectors (muscles or glands)	Target cells/organs
How quick is this process?	Rapid	Slow
How long does this process last?	Short lasting	Long lasting
How widespread are the effects?	Localised	Effects are seen around the body

