Mathematics

Sequences
 The $\mathrm{n}^{\text {th }}$ term rule: position-to-term for arithmetic sequences

Downloadable Resource

Ms Jones

Try This

Some columns and rows have been torn off this number grid.

Imagine this grid had 6 columns.
What numbers would go in the blue squares?

How would this change if the grid had 8 columns? What about 100 columns?

Independent task

1. Which column in the grid to the right has the following position-to-term rules:
a) $5 n$
b) $5 n-3$
c) $5 n+1$

| c | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | 3 | 4 | 5 | 6 | Row 1 |
| 7 | 8 | 9 | 10 | 11 | Row 2 |
| 12 | 13 | 14 | 15 | 16 | Row 3 |
| 17 | 18 | 19 | 20 | 21 | Row 4 |

2. Work out the position-to term-rules for columns a, b, c, and d from the 2 grids below.

a		b	
3	4	5	6
7	8	9	10

c				d				
-12	-11	-10	-9	-8	-7	-6		
-5	-4	-3	-2	-1	0	1		

2. Work out position-to-term rules for the following sequences:
a) $1,3,5,7,9, \ldots$
b) $2,8,14,20,26, \ldots$
c) $-5,-1,3,7,11, \ldots$

Explore

Look at the descriptions of three arithmetic sequences.

How many $\mathbf{n}^{\text {th }}$ term rules can you think of to match each description?
Can you find any $\mathbf{n}^{\text {th }}$ term rules that would work for all three descriptions?

