Ecological relationships and classification Lesson 6 - Estimating Populations

Biology - Key Stage 3

Miss Lewis

Task

1. Calculate the frequency.
2. Calculate the total number of flowers.
3. Calculate the mean.

Mean = Total number of organisms Frequency

Number of flowers in the quadrat	Tally	Frequency	Total Number of Flowers			
1	\|					
2	\|XT					
3	H\|I					
4	\|					
5	\|					
6	IXT					
7	\|					
8	\|					
9	1					
10	\|					
Totals:						

Task

Calculate the mean number of flowers from the frequency table.

Number of flowers in the quadrat

Tally
quar

1	1			
2	\|			
3	\|			
4	IXTI			
5	\|			
6	IXT			
7	\|			
8	\|			
9	\|			
10	\|			
Totals:				

Step	Answer
1. Calculate area of your quadrat	
2. Calculate the area of your sampling site	
3. Calculate the number of quadrats that fit the sample area (multiplication factor) by: area of the sampling site \div area of the quadrat.	
4. Find the mean of your random samples	
5. Multiply the mean number by the number calculated in step 3 to calculate your estimated population of daisies. Round up your answer to the nearest whole number.	

Estimate the population of daisies in the field

A $0.5 \mathbf{~ m} \times 0.5 \mathbf{m}$ quadrat was placed randomly $\mathbf{1 0}$ times on the site shown and the numbers of daisies recorded were as follows: 5, 0, 2, 6, 9, 1, 7, 2, 0, 13

35 m

Step	Answer
1. Calculate area of your quadrat	
2. Calculate the area of your sampling site	
3. Calculate the number of quadrats that fit the sample area (multiplication factor) by: area of the sampling site \div area of the quadrat.	
4. Find the mean of your random samples	
5. Multiply the mean number by the number calculated in step 3 to calculate your estimated population of daisies. Round up your answer to the nearest whole number.	

Estimate the population of daisies in the field

A $0.5 \mathbf{~ m} \times 0.5 \mathbf{m}$ quadrat was placed randomly $\mathbf{1 0}$ times on the site shown and the numbers of daisies recorded were as follows: 6, 1, 4, 12, 7, 0, 8, 3, 0, 10

24 m

Step	Answer
1. Calculate area of your quadrat	
2. Calculate the area of your sampling site	
3. Calculate the number of quadrats that fit the sample area (multiplication factor) by: area of the sampling site \div area of the quadrat.	
4. Find the mean of your random samples	
5. Multiply the mean number by the number calculated in step 3 to calculate your estimated population of daisies. Round up your answer to the nearest whole number.	

Estimate the population of daisies in the field

A $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ quadrat was placed randomly 8 times on the site shown and the numbers of daisies recorded were as follows:

12, 16, 8, 1, 9, 5, 2, 11
9 m

Step	Answer
1. Calculate area of your quadrat	
2. Calculate the area of your sampling site	
3. Calculate the number of quadrats that fit the sample area (multiplication factor) by: area of the sampling site \div area of the quadrat.	
4. Find the mean of your random samples	
5. Multiply the mean number by the number calculated in step 3 to calculate your estimated population of daisies. Round up your answer to the nearest whole number.	

Estimate the population of daisies and dandelions in the field

A $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ quadrat was placed randomly 8 times on the site shown and the numbers of daisies and dandelions recorded were as follows:

15 m
Daisies: 0, 12, 3, 3, 9, 12, 8, 11, 0, 15
Dandelions: 1, 4, 2, 6, 6, 2, 3, 6, 4, 7

Step	Answer
1. Calculate area of your quadrat	
2. Calculate the area of your sampling site	
3. Calculate the number of quadrats that fit the sample area (multiplication factor) by: area of the sampling site \div area of the quadrat.	
4. Find the mean of your random samples	
5. Multiply the mean number by the number calculated in step 3 to calculate your estimated population of daisies. Round up your answer to the nearest whole number.	

Exam Style Question

The green in town measures 160×60 metres.
A student wanted to estimate the number of daisies are growing on the green. The student found an area where daisies were growing and placed a $1 \mathrm{~m} \times 1 \mathrm{~m}$ quadrat in one position in that area. The image shows the daisies in the quadrat.
The student said: ‘This result shows that there are 115200 daisies on the green. How did the student calculate this?
Hint: Think about the table.

Exam Style Question

The green in town measures 160×60 metres.
A student wanted to estimate the number of daisies are growing on the green. The student found an area where daisies were growing and placed a $1 \mathrm{~m} \times 1 \mathrm{~m}$ quadrat in one position in that area.

The student's estimate is probably not accurate. How could you improve the student's method to give more accurate results?

