Combined science/Physics - KS4 - Energy

Lesson 2 - The kinetic energy store

Dr Fishwick

Independent practice

1. What are the factors that affect the value of the kinetic store?
a. \mathbf{M}
b. s \qquad
2. Which will have more energy in its kinetic store?
a. Two cars (A and B) both with mass 1000 kg but car A is travelling at 10 m / s and car B is travelling at $20 \mathrm{~m} / \mathrm{s}$.
b. A car travelling at $20 \mathrm{~m} / \mathrm{s}$ or a lorry travelling at $20 \mathrm{~m} / \mathrm{s}$

Independent practice

Calculate the kinetic energy of the following objects:

1. A 1000 kg car moving at $10 \mathrm{~m} / \mathrm{s}$.
2. A 0.1 kg apple falling from a branch at $5 \mathrm{~m} / \mathrm{s}$
3. Challenge: A 500 g football kicked at $25 \mathrm{~m} / \mathrm{s}$
4. Challenge: An 20 g European swallow flying at $11 \mathrm{~m} / \mathrm{s}$
5. Super challenge: If a moon with a mass of $9.8 \times 10^{22} \mathrm{~kg}$ orbits at a velocity of $60 \mathrm{~km} / \mathrm{s}$, what is its kinetic energy store?

Independent practice

1. An asteroid flies past the Earth at $28000 \mathrm{~m} / \mathrm{s}$. What is its mass given that it has 786500 J of energy in its kinetic store?
2. A motorbike has 710500 J of KE and a velocity of $70 \mathrm{~m} / \mathrm{s}$. What is its mass?
3. A cyclist has 400 J of KE and a velocity of $10 \mathrm{~m} / \mathrm{s}$. What is their mass?
4. Challenge: A car has 56 kJ of KE and a velocity of $35 \mathrm{~m} / \mathrm{s}$. What is its mass?
5. Super challenge: What is the mass of the ISS? Its orbital velocity is $8 \mathrm{~km} / \mathrm{s}$ and its KE is $1.4 \times 10^{13} \mathrm{~J}$.

Independent practice

1. A bullet with a mass of 0.012 kg has 1400 J of energy in the kinetic store. What is its velocity?
2. Find the velocity of a cyclist with a mass of 85 kg and 2.5 kJ of energy in the kinetic store.
3. Challenge: An oil tanker with a mass of 30000 tonnes (1 tonne $=1000 \mathrm{~kg}$) has a kinetic energy of $1.2 \times 10^{9} \mathrm{~J}$. What is its speed?

Answers

Review

1. What are the factors that affect the value of the kinetic store?
a. Mass
b. speed
2. Which will have a more filled kinetic store?
a. Two cars (A and B) both with mass 1000 kg but car A is travelling at 10 m / s and car B is travelling at $20 \mathrm{~m} / \mathrm{s}$. Car B
b. A car travelling at $20 \mathrm{~m} / \mathrm{s}$ or a lorry travelling at $20 \mathrm{~m} / \mathrm{s}$. Lorry

Review

Calculate the kinetic energy of the following objects:

1. A 1000 kg car moving at $10 \mathrm{~m} / \mathrm{s} .50000 \mathrm{~J}$
2. A 0.1 kg apple falling from a branch at $5 \mathrm{~m} / \mathrm{s} 1.3 \mathrm{~J}$ (1.25 J)
3. Challenge: A 500 g football kicked at $25 \mathrm{~m} / \mathrm{s} \mathbf{1 6 0} \mathbf{J}$ ($\mathbf{1 5 6 . 2 5} \mathrm{J}$)
4. Challenge: An unladen 20 g European swallow flying at $11 \mathrm{~m} / \mathrm{s} 1.2 \mathrm{~J}$ (1.21 J)
5. Super challenge: If a moon with a mass of $9.8 \times 10^{22} \mathrm{~kg}$ orbits at a velocity of $60 \mathrm{~km} / \mathrm{s}$, what is its kinetic energy store? $\mathbf{1 . 8 \times 1 0 ^ { 3 2 } \mathrm { J }}$

Review

1. An asteroid flies past the Earth at $28000 \mathrm{~m} / \mathrm{s}$. What is its mass given that it has 786500 J of energy in its kinetic store?
2. A motorbike has 710500 J of KE and a velocity of $70 \mathrm{~m} / \mathrm{s}$. What is its mass?
3. A cyclist has 400 J of KE and a velocity of $10 \mathrm{~m} / \mathrm{s}$. What is their mass?
4. Challenge: A car has 56 kJ of KE and a velocity of $35 \mathrm{~m} / \mathrm{s}$. What is its mass?
5. Super challenge: What is the mass of the ISS? Its orbital velocity is $8 \mathrm{~km} / \mathrm{s}$ and its KE is $1.4 \times 10^{13} \mathrm{~J}$.

Review

1. A bullet with a mass of 0.012 kg has 1400 J of energy in the kinetic store. What is its velocity? 483 m/s
2. Find the velocity of a cyclist with a mass of 85 kg and 2.5 kJ of energy in the kinetic store. $\mathbf{7 . 7} \mathbf{~ m} / \mathrm{s}$
3. Challenge: An oil tanker with a mass of 30000 tonnes (1 tonne $=1000 \mathrm{~kg}$) has a kinetic energy of $1.2 \times 10^{9} \mathrm{~J}$. What is its speed? $8.9 \mathrm{~m} / \mathrm{s}$
